Close
Help
Need Help?



On the Adaptive Design Rules of Biochemical Networks in Evolution

Submit a Paper


LA Press Analytics, last 90 days


3893 Article Views

Publication Date: 28 Feb 2007

Journal: Evolutionary Bioinformatics 2007:3 27-39

ebjournal

10,871 Article Views

72,312 LA Press Article Views

More Statistics

Abstract : Biochemical networks are the backbones of physiological systems of organisms. Therefore, a biochemical network should be sufficiently robust (not sensitive) to tolerate genetic mutations and environmental changes in the evolutionary process. In this study, based on the robustness and sensitivity criteria of biochemical networks, the adaptive design rules are developed for natural selection in the evolutionary process. This will provide insights into the robust adaptive mechanism of biochemical networks in the evolutionary process. We find that if a mutated biochemical network satisfies the robustness and sensitivity criteria of natural selection, there is a high probability for the biochemical network to prevail during natural selection in the evolutionary process. Since there are various mutated biochemical networks that can satisfy these criteria but have some differences in phenotype, the biochemical networks increase their diversities in the evolutionary process. The robustness of a biochemical network enables co-option so that new phenotypes can be generated in evolution. The proposed robust adaptive design rules of natural selection gain much insight into the evolutionary mechanism and provide a systematic robust biochemical circuit design method of biochemical networks for biotechnological and therapeutic purposes in the future.

Our Service Promise

  • Prompt Publication (Average 3 Weeks)
  • Fair & Constructive Peer Review
  • Professional Author Service
  • High Visibility
  • High Readership
  • What Our Authors Say

Quick Links

Follow Us We make it easy to find new research papers. RSS Feeds Email Alerts Twitter Facebook

BROWSE CATEGORIES
Our Testimonials
“ Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse pretium erat ac lorem eleifend congue. Aenean suscipit nisl vitae era.t iaculis id pulvinar metut. ”
- Dr Richard Watt (Oxford University) What our authors say