Close
Help
Need Help?



A Simple Derivation of the Distribution of Pairwise Local Protein Sequence Alignment Scores

Submit a Paper


LA Press Analytics, last 90 days


5473 Article Views

Publication Date: 14 Feb 2008

Journal: Evolutionary Bioinformatics 2008:4 41-45

ebjournal

10,871 Article Views

72,312 LA Press Article Views

More Statistics

Abstract

Confidence in pairwise alignments of biological sequences, obtained by various methods such as Blast or Smith-Waterman, is critical for automatic analyses of genomic data. In the asymptotic limit of long sequences, the Karlin-Altschul model computes a P-value assuming that the number of high scoring matching regions above a threshold is Poisson distributed. Using a simple approach combined with recent results in reliability theory, we demonstrate here that the Karlin-Altshul model can be derived with no reference to the extreme events theory. Sequences were considered as systems in which components are amino acids and having a high redundancy of Information reflected by their alignment scores. Evolution of the information shared between aligned components determined the Shared Amount of Information (SA.I.) between sequences, i.e. the score. The Gumbel distribution parameters of aligned sequences scores find here some theoretical rationale. The first is the Hazard Rate of the distribution of scores between residues and the second is the probability that two aligned residues do not lose bits of information (i.e. conserve an initial pairing score) when a mutation occurs.

Our Service Promise

  • Prompt Publication (Average 3 Weeks)
  • Fair & Constructive Peer Review
  • Professional Author Service
  • High Visibility
  • High Readership
  • What Our Authors Say

Quick Links

Follow Us We make it easy to find new research papers. RSS Feeds Email Alerts Twitter Facebook

BROWSE CATEGORIES
Our Testimonials
“ Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse pretium erat ac lorem eleifend congue. Aenean suscipit nisl vitae era.t iaculis id pulvinar metut. ”
- Dr Richard Watt (Oxford University) What our authors say