Close
Help
Need Help?





JOURNAL

Cancer Informatics

1,136,999 Journal Article Views | Journal Analytics

Gene Selection using a High-Dimensional Regression Model with Microarrays in Cancer Prognostic Studies

Submit a Paper



Publication Date: 27 Feb 2012

Type: Original Research

Journal: Cancer Informatics

Citation: Cancer Informatics 2012:11 29-39

doi: 10.4137/CIN.S9048

Abstract

Mining of gene expression data to identify genes associated with patient survival is an ongoing problem in cancer prognostic studies using microarrays in order to use such genes to achieve more accurate prognoses. The least absolute shrinkage and selection operator (lasso) is often used for gene selection and parameter estimation in high-dimensional microarray data. The lasso shrinks some of the coefficients to zero, and the amount of shrinkage is determined by the tuning parameter, often determined by cross validation. The model determined by this cross validation contains many false positives whose coefficients are actually zero. We propose a method for estimating the false positive rate (FPR) for lasso estimates in a high-dimensional Cox model. We performed a simulation study to examine the precision of the FPR estimate by the proposed method. We applied the proposed method to real data and illustrated the identification of false positive genes.


Downloads

PDF  (1.16 MB PDF FORMAT)

RIS citation   (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)

BibTex citation   (BIBDESK, LATEX)

XML

PMC HTML


Sharing




What Your Colleagues Say About Cancer Informatics
Cancer Informatics has become an increasingly important source for research in the methodology of cancer genomics and the novel use of informatics technology. I have been impressed by the journal's contents and have been very gratified by the number of accesses to my recent publication. Cancer Informatics has filled an important gap in cancer research journals.
Dr Richard Simon (Chief, Biometric Research Branch, National Cancer Institute, USA )
More Testimonials

Quick Links




Follow Us We make it easy to find new research papers.
Email Alerts RSS Feeds
Facebook Google+ Twitter
Pinterest Tumblr YouTube




SUBJECT HUBS
Author Survey Results
author_survey_results
All authors are surveyed after their articles are published. Authors are asked to rate their experience in a variety of areas, and their responses help us to monitor our performance. Presented here are their responses in some key areas. No 'poor' or 'very poor' responses were received; these are represented in the 'other' category.
See Our Results