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Abstract: Mining of gene expression data to identify genes associated with patient survival is an ongoing problem in cancer prognostic 
studies using microarrays in order to use such genes to achieve more accurate prognoses. The least absolute shrinkage and selection 
operator (lasso) is often used for gene selection and parameter estimation in high-dimensional microarray data. The lasso shrinks some 
of the coefficients to zero, and the amount of shrinkage is determined by the tuning parameter, often determined by cross validation. 
The model determined by this cross validation contains many false positives whose coefficients are actually zero. We propose a method 
for estimating the false positive rate (FPR) for lasso estimates in a high-dimensional Cox model. We performed a simulation study to 
examine the precision of the FPR estimate by the proposed method. We applied the proposed method to real data and illustrated the 
identification of false positive genes.
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Introduction
Establishing prognoses of clinical outcomes on the 
basis of microarray data is often performed in this 
decade.1–4 In cancer research, not only the predic-
tion of response to treatment but also the prediction 
of time to such events, eg, overall survival (OS) and 
relapse-free survival (RFS) are investigated.5 To 
precisely predict such outcomes, we need to iden-
tify the genes that are highly correlated with them 
and are called the outcome-predictive genes. This 
is difficult, however, because the number of genes 
p in the high-dimensional microarray data exceeds 
the number of patients n. Several researchers have 
attempted to identify the outcome-predictive genes 
in the n , p data settings by using traditional sta-
tistical methods, but the accuracy of the predic-
tion based on the genes identified in this way is not 
very satisfactory. For example, van’t Veer et al3 and 
Van de Vijver et al2 analyzed the gene expression 
profiles of 78 lymph node-negative breast cancer 
patients in order to establish gene signatures related 
to the risk of distant metastasis. Using a “three-step 
supervised classification method”, they identified 
70 genes that categorize patients into “good” and 
“bad” prognostic groups. Wang et al4 also analyzed 
the gene expression profiles of 115 patients for the 
same  purpose. They identified 76 genes by using 
the univariate Cox’s proportional hazard regres-
sion analysis, which evaluates the relationship 
between the level of expression and the distant-
 metastasis-free survival for each gene. Notably, both 
studies had only 3 genes in common. Furthermore, 
the predictive performance based on both gene sig-
natures drastically decreased when applied to other 
data sets.6 Thus, the problem lies in the difficulty 
of precise identification of the outcome-predictive 
genes in high-dimensional data.

To address this difficulty, researchers have been 
emphasizing the penalized regression methods. 
Among them, the least absolute shrinkage and selec-
tion operator (lasso), which selects the outcome-
predictive genes and simultaneously estimates 
the regression coefficients in the Cox regression 
model, is a typical penalized regression method.7,8 
This method shrinks all regression coefficients 
toward zero, and automatically sets many of them 
to exactly zero, depending on the amount of regular-
ization employed. This can be useful, in particular, 

in high-dimensional data, and the prediction 
performance for microarray data have been widely 
studied by many researchers by using this method.9,10 
Several researchers showed that the lasso outper-
forms the simple variable selection methods such 
as the univariate Cox regression analysis,9,11 with 
respect to the accuracy of prediction.

In the lasso, the amount of shrinkage varies, 
depending on the value of the tuning parameter, 
which is often determined by cross validation.12 The 
number of genes selected as the outcome-predictive 
genes (ie, the genes included in the Cox model) gen-
erally decrease as the value of the tuning parameter 
increases. The optimal value of the tuning parameter 
that maximizes the prediction accuracy is determined; 
however, the set of genes identified using the optimal 
value contains the non-outcome-predictive genes (ie, 
false positive genes) in many cases.10 Inclusion of 
such genes in the Cox model may yield an inaccurate 
prediction for the time-to-event outcome in patients. 
It is difficult to completely eliminate the false positive 
(FP) genes, even if we use the other penalized regres-
sion models. One idea to improve the identifiability 
of the outcome-predictive genes is to determine the 
FP genes, and subsequently, exclude them from the 
Cox model. To realize this, we developed a method 
for estimating the proportion of FP genes, ie, false 
positive rate (FPR), among the total identified genes. 
Specifically, the FPR is calculated using a mixture 
distribution based on the coefficients estimated by 
the lasso. We formulate the mixture distribution by 
considering the features of the lasso. By identifying 
the FP genes using the proposed method and exclud-
ing them from the Cox model, we are able to improve 
the prediction accuracy of the model. The accuracy of 
the FPR estimated by the proposed method is exam-
ined by simulation studies. We present the illustration 
of the proposed method using a well-known data set 
containing gene expressions from patients with dif-
fuse large B-cell lymphoma (DLBCL) along with 
their survival time.1

We organize the remainder of this study as follows. 
In the Methods section, we introduce the Cox regres-
sion model, the lasso, and our proposed method for 
estimating the FPR. In the Simulation Studies section, 
we examine the accuracy of the estimated FPR through 
simulation studies with the situations observed in typi-
cal cancer prognostic studies with microarrays. In the 
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Application section, we illustrate the identification of 
FP genes by the proposed method by using the well-
known DLBCL data. Finally, in the Discussion and 
Conclusion section, we discuss the characteristics of 
the proposed approach in further detail.

Methods
Cox proportional hazard model
Consider a sample of size n from which the relation-
ship between the timing of an event and gene expres-
sion levels x1, …, xp of p genes need to be estimated. 
Due to censoring, for i = 1, …, n, the ith datum in 
the patient is denoted by (ti, δi, xi1, …, xip), where δi 
is the censor indicator and ti is the event time if δi = 1 
or censored time if δi = 0, and xi = (xi1, …, xip)

T is the 
vector of the gene expression levels of p genes for 
the ith patient. The Cox proportional hazard model is 
the most popular method to evaluate the relationship 
between gene expression and survival outcomes.13 
The hazard function of an event at time t for a patient i 
with the gene expression levels xi is given by

 h t h t( | ) ( ) exp ( )x T
i i= 0 x β  (1)

where β = (β1, …, βp)
T is a parameter vector and 

h0(t) is the baseline hazard, which is the hazard for 
the respective individual when all variable values are 
equal to zero. In the general setting with n . p, the 
coefficients are estimated by maximizing Cox’s log 
partial likelihood as follows:

 

T T

1 ( )

( ) x log exp (x )
i

n

i i i
i r R t

l β δ β β
= ∈

   = −  
    

∑ ∑  (2)

where R(ti) is the risk set that contains the patients 
whose survival time or censored time is at least ti.

The lasso
Tibshirani7,8 introduced a novel parameter  estimating 
method that simultaneously executes parameter 
e stimation and variable selection by adding the 
L1 norm to log likelihood function. The  penalized 
l ikelihood function lp of the lasso in the Cox’s 
 proportional hazard model is as follows:

 1

( ) ( ) | |
p

p j
j

l lβ β λ β
=

= − ∑  (3)

where λ is the tuning parameter, which determines 
the amount of shrinkage, and l(β) is the Cox’s log 
partial likelihood. The parameters are estimated by 
maximizing Equation (3). In this study, the parameters 
were estimated using the efficient gradient ascent 
algorithm.14

When performing the lasso, we need to determine 
the value of λ, which affects the lasso estimates. As 
the value of λ increases, the number of the selected 
genes monotonically decreases. The optimal value is 
often determined by the cross-validation log partial 
likelihood.12 The K-fold cross-validated log partial 
likelihood is given by

 
 (4)

where l(-k) 
ˆ( )β  is the log partial likelihood when 

the kth fold is left out, and ( )
ˆ

kβ −  is the estimate of 
β obtained by the lasso when the kth fold is left 
out. The optimal tuning parameter λ is obtained by 
 maximizing CV(λ). The number of folds to exe-
cute the above-mentioned cross validation is often 
set to 5 (or 10), considering the computational 
feasibility.

estimation of false positive rate (FPr)
In this section, we propose the method to estimate 
the FPR for a fixed value of λ determined by the 
cross validation by assuming a mixture distribution 
for the lasso estimates. The mixture distribution is 
developed on the basis of the following 2 features 
of the lasso: (i) the lasso selects at most n variables, 
because of the nature of the convex optimization 
problem when n , p,15,16 and (ii) in the Bayesian 
framework, the lasso estimate is derived as the pos-
terior mode under independent Laplace prior distri-
bution as follows:

 

1
;0, exp( | |)

2

λβ λ β
λ

  = −  j jLf  (5)

where fL (y; a, b) = (2b)−1exp (−|y − a|/b) is the prob-
ability density function of Laplace distribution with 
location parameter a and scale parameter b.7 On 
the basis of these features of the Lasso, the mixture 
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 distribution is assumed to ˆ
jβ  for the fixed value of λ 

as follows:

 (6)

where π0 and πc are mixed proportions 
( ) 2

0 1 1 ; ( ; , )C
c c N c cfπ π µ σ=+ ∑ = ⋅ is the probability den-

sity function of the normal distribution with mean µc 
(≠0) and variance 2

cσ  in component c; C is the number 
of component, which is determined on the basis of 
any model evaluation criteria; and ε is the constant 
value, which is boundlessly close to 0, eg, ε = 10−8. 
The unknown parameters, π0, πc, τ, µc, and σc, are 
estimated by maximizing the log-likelihood function 
of Equation (6).

The mixture distribution defined by Equation (6) 
is formulated on the basis of the following concepts. 
Since the lasso selects at most n genes in the n , p 
setting, the coefficients for at least p − n genes are 
shrunken toward exactly zero; therefore, Equation (6) 
consists of 2 terms, ie, n/p term and 1 − n/p term. In 
the n/p term, the C + 1 component mixture distribu-
tion comprising the Laplace and normal distributions. 
Specifically, the Laplace distribution with location 
parameter 0 and scale parameter 1 1ˆ, ( ;0, )τ β τ− −

jLf , 
is assumed as the distribution of the non-outcome-
predictive genes considering the above-mentioned 
feature (ii) of the lasso, while the C- component 
(c = 1, …, C) normal distribution with mean µc (≠0) 
and variance 2

cσ  is assumed as the distribution of the 
outcome-predictive genes. It should be noted that 
normal distribution is a choice of convenience. Next, 
in the 1 − n/p term, the Laplace distribution with loca-
tion parameter 0 and scale parameter ε is assumed as 
the distribution of the p - n genes, considering the 
above-mentioned feature (i) of the lasso.

Using the estimated mixture distribution, we 
defined a FPR for a cut-off value ζ (.0) as fol-
lows: given the cut-off value ζ, the area under the 
Laplace distribution in the n/p term is the estimated 
proportion of FP genes, and can be written as  
follows:
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Next, the estimated proportion of true positive 
(TP) genes for the cut-off value ζ is given by the 
following:
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Using equation (7) and equation (8), we obtain the 
FPR estimator for the cut-off value ζ as follows:
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ˆ
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P
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+
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Based on the cut-off value ζ used, the estimated 
proportions of FP and TP genes and the correspond-
ing estimated FPR are found to vary. We determined 
a cut-off value based on the target FPR specified in 
priori. Specifically, by sequentially changing ζ, we 
determined the cut-off value that allowed the esti-
mated FPR to be less than or equal to the target FPR. 
For example, if the target FPR was 0.05, we used the 
minimum cut-off value that would make the estimated 
FPR # 0.05.

simulation studies
Simulation setting
We performed simulation studies to examine the pre-
cision of the FPR estimated by the proposed method. 
In the simulation studies, the number of patients n is 
set to 200. The number of genes p is set to 1,000, 
including the p1 (= 5, 30) outcome-predictive 
genes, ie, TP genes. The coefficient for gene j 
(  j = 1, …, p) βj is set to 1.5 for the outcome-
 predictive genes (  j  = 1, …, p1) and 0 for the non-
 outcome-predictive genes (  j = p1 + 1, …, p). The 
number of component C is set to 1  throughout. We 
may not be able to assume independence among genes, 
since the expression levels among the outcome-predic-
tive genes are likely to be correlated because of gene 
 co-regulation. It may be reasonable to assume that the 
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expression levels among the  non-outcome-predictive 
genes as well as those between the outcome-predic-
tive genes and the non-outcome-predictive genes are 
independent.17 The gene expression levels for patient 
i, xi, are generated from the multivariate normal dis-
tribution with mean vector 0 and covariance matrix 
Σ with variance 1, so that the correlation among the 
expression levels of the outcome-predictive genes is 
0.0, 0.2, or 0.5, and is constant among the outcome-
predictive genes. The survival time for patient i is 
generated on the basis of the exponential model as 
follows:

 
Tlog( )/exp (x )β= −i it U  (10)

where U is the uniform random variable between  
0 and 1.18 We set λ  to 10–30 by 5 in the simula-
tion studies in order to evaluate the precision of the 

estimated FPR for various values of λ, although the 
 optimal value of λ is determined by cross validation 
in practice. The value of ζ is defined as the minimum 
value among ˆ

jβ  in the simulation 
studies. The average value for true FPR, the estimated 
numbers of both TP and FP genes, and the estimated 
FPR in 1,000 simulations are reported.

Simulation results
Table 1 shows that the average of the genes with ˆ 0jβ ≠  
in the lasso, true FPR, and the estimated TP, FP, and 
FPR for each design parameters in 1,000  simulations. 
According to Table 1, we found that the accuracy of 
the estimated FPR varied depending on the value of 
λ. Specifically, the accuracy of the estimated FPR 
was satisfactory for the values of λ = 10, 15, and 20, 
and it was slightly underestimated for the values of 
λ = 25 and 30. The number of genes with ˆ

jβ  was rela-

Table 1. Accuracy of the FPr estimated using the method proposed in the simulation studies.

ρ p1 λ { }ˆ# ; 0j jβ ≠ True FpR, % FPR,% TP FP

0 5 10 126.2 96.0 96.0 5.0 121.1
15 69.2 92.7 92.6 5.1 64.1
20 31.0 83.5 82.9 5.2 25.8
25 12.4 57.4 53.4 5.5 6.9
30 6.5 19.8 14.6 5.4 1.1

30 10 106.7 71.7 71.4 30.3 76.5
15 72.1 57.7 56.8 30.6 41.5
20 57.8 50.0 44.0 32.0 25.8
25 42.5 44.4 32.5 28.5 14.1
30 28.2 36.9 27.9 20.2 8.0

0.2 5 10 122.7 95.9 95.9 5.0 117.6
15 65.4 92.3 92.2 5.1 60.3
20 27.8 81.5 80.7 5.2 22.5
25 10.3 48.6 43.8 5.5 4.8
30 5.7 10.1 6.8 5.2 0.5

30 10 64.1 52.8 52.0 30.5 33.6
15 32.1 6.4 5.0 30.4 1.7
20 30.0 0.1 0.1 30.0 0.0
25 30.0 0.0 0.0 30.0 0.0
30 30.0 0.0 0.0 30.0 0.0

0.5 5 10 119.3 95.8 95.8 5.0 114.2
15 62.5 91.9 91.8 5.1 57.4
20 25.4 79.7 78.8 5.2 20.2
25 9.2 42.6 36.4 5.5 3.6
30 5.4 6.5 3.3 5.2 0.2

30 10 59.8 49.5 48.5 30.5 29.3
15 31.1 3.4 2.1 30.4 0.7
20 30.0 0.0 0.0 30.0 0.0
25 30.0 0.0 0.0 30.0 0.0
30 30.0 0.0 0.0 30.0 0.0
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Table 2. The GenBank accession numbers, descriptions, and coefficient estimates of 12 genes selected by the lasso.

GenBank accession number Description β̂

AA805575 Thyroxine-binding globulin precursor −0.1039
X00452 Major histocompatibility complex, class II, DQ alpha 1 −0.1026
LC_29222 – −0.0927
AF044323 COX15 homolog, cytochrome c oxidase assembly protein (yeast) 0.0167
L19872 hydrocarbon receptor −0.0078
M20430 Major histocompatibility complex, class II, Dr beta 5 −0.0076
K01171 Major histocompatibility complex, class II, Dr alpha −0.0067
X59812 (r92015) Cytochrome P450, subfamily XXVIIA polypeptide −0.0028
M63438 Immunoglobulin kappa constant 0.0028
X82240 (AA729003) T-cell leukemia/lymphoma 1A −0.0017
X82240 (r97095) T-cell leukemia/lymphoma 1A −0.0010
X59812 (h98765) Cytochrome P450, subfamily XXVIIA polypeptide −0.0002

tively small for the larger value of λ; therefore, the 
degree of underestimation observed in the simulation 
studies may be acceptable. For instance, in case of 
ρ = 0.0, p1 = 5, and λ = 30, the average number of 
true and estimated FP genes were 1.3 (= 6.5 × 0.198) 
and 1.0 (= 6.5 × 0.146), respectively, and the differ-
ence between them was negligibly small in practice. 
Furthermore, the values of ρ and p1 did not greatly 
impact the accuracy of the FPR estimated.

Application to DLBcL data
We illustrated the exclusion of the FP genes from 
the genes selected by the lasso through the applica-
tion of the proposed method to a real data set com-
prising the overall survival in 240 DLBCL patients 
with the expression of 7,399 genes.1 The survival 
times were observed in 138 patients, and the cen-
sored times, in 102 patients. The median follow-up 
time was 3.9 years, and the median survival time 
was 2.8 years.

We divided the 240 patients into 2 groups; the 
training data comprised 160 patients, and the vali-
dation data, 80 patients, as described by Rosenwald 
et al.1 We determined that the optimal value of λ was 
27 by performing 5-fold cross validation, resulting in 
the selection of 12 genes as the outcome-predictive 
genes. Table 2 shows the GenBank accession number, 
description, and coefficient estimate for each of the 
12 genes selected by the lasso.

Given the estimated coefficients ˆ ( 1, ,7399)β = j j , 
we assume that the 2 mixture distributions with C = 1 
and 2, and compared their fitness by using Akaike 
Information Criterion (AIC).19 AIC is the most well 

known criterion for determining the  number of 
components in the models. As a result, we selected 
the value of C = 1 for simplicity of interpretation, 
although the AICs for C = 1 and 2 were almost same. 
Thus, we assumed the mixture distribution with C = 1, 
and obtained the following estimated  distribution 
(Fig. 1):

 

f fL

f

j j

N j

˘ ˘

˘

˘

. ; , .

. ; . , .

β β

β

( ) = ( ){
+ −

160
7399

0 75 0 0 0053

0 25 0 10 0 0064(( )}
+ ( )−7239
7399

0 10 8fL j ; ,β

 (11)

The mixed proportions of the Laplace and normal 
distributions in the n/p term were too small; therefore, 
we enlarged the part including these distributions in 
Figure 1. In addition, according to the estimated mix-
ture distribution, the outcome-predictive genes that 
increase the risk of death, ie, genes with ˆ 0jβ > , were 
not found.

Table 3 shows that the estimated numbers of FP 
and TP genes and the corresponding estimated FPR 
for various cut-off values. The estimated FPR was less 
than 5.0% for the cut-off value ζ . 0.03, indicating that 
3 genes might be TP genes, although the FPR might be 
underestimated according to the results of the simula-
tion  studies. In order to determine 9 genes that were 
most likely to be FP genes, we calculated the AICs of all 
possible models consisting of 3 genes selected among 
12 genes, ie, 220 models in total. The model including 
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3 genes with β̂  values of −0.1039, −0.1026, and −0.0927 
for AA805575, X00452, and LC_29222 showed the 
lowest AIC, and therefore, the remaining 9 genes were 
considered as FP genes.

gene Set enrichment Analysis
As an alternative method for the exclusion of the 
FP genes from the genes selected by the lasso, we 
used the Gene Set Enrichment Analysis (GSEA),20 
a computational method that assesses whether an a 
priori defined set of genes shows statistically signif-
icant relevance to survival time. The set of genes to 
be assessed by GSEA is generally defined based on 
the functional/biological relevance of gene expres-

sion profiles, such as genes encoding products in a 
metabolic pathway, located in the same cytogenetic 
band, or sharing the same Gene Ontology (GO) 
category. In this study, for the application of the 
GSEA to the DLBCL data, we identified 1,454 sets 
of genes based on the GO categories. Of these, 
53 gene sets included at least 1 of the 12 genes 
selected by the lasso method. It should be noted that 
5 genes (eg, M20430, AA805575, M63438, LC_ 
29222, and L19872) were not included in any of 
the gene sets. For this study, we implemented the 
modified GSEA for survival time proposed by Lee 
et al.21 Table 4 shows 38 gene sets with false discov-
ery rate (FDR) , 0.50 estimated by the modified 
GSEA. According to Table 4, the gene sets, includ-
ing AF044323 and K01171, showed lower P-value 
and FDR, and therefore, we determined these genes 
as TP genes, and the remaining 10 genes were con-
veniently considered FP genes.

Prediction accuracy
We demonstrated that the 9 genes identified did not 
impact the survival outcome by comparing the pre-
diction accuracy between the models consisting of 
the aforementioned 3 and all 12 genes. Furthermore, 
we also compared the prediction accuracy between 
the models by which 3 TP genes were identified by 
the proposed method and 2 TP genes were identified 
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Figure 1. The estimated mixture distribution assuming the lasso estimates in the DLBCL data; fL and fN are the probability density functions of laplace 
and normal distributions, respectively. β̂  is the estimate by the lasso and f(β̂ ) is the probability density of β̂ . 
note: A magnified image of the distribution between the β̂  values −0.3 and 0.1 is inserted.

Table 3. The estimated numbers of TP and FP genes 
and the estimated FPr for the cut-off values from 0.0001 
to 0.05.

cut-off ζ { }β̂;# j j >ζ Fp Tp FpR,%

0.0001 12 8.96 3.04 74.6
0.0005 11 8.05 2.95 73.2
0.001 10 7.13 2.87 71.3
0.005 7 3.76 3.24 53.7
0.01 4 1.24 2.76 30.9
0.02 3 0.19 2.81 6.3
0.03 3 0.03 2.97 1.0
0.04 3 0.00 3.00 0.0
0.05 3 0.00 3.00 0.0
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Table 4. gene sets with FDr , 0.5 in the gSeA.

Gene set P-value FDR The genes included in the gene set
Biosynthetic process ,0.001 ,0.001 AF044323
Cellular biosynthetic process ,0.001 ,0.001 AF044323
Mitochondrial part 0.002 0.035 AF044323
Mitochondrion 0.005 0.066 AF044323
Mitochondrial envelope 0.008 0.085 AF044323
Cytoplasmic part 0.014 0.093 AF044323, K01171
Lytic vacuole 0.014 0.093 K01171
Lysosome 0.014 0.093 K01171
Vacuole 0.022 0.103 K01171
Cellular component assembly 0.025 0.103 AF044323
Protein metabolic process 0.028 0.103 AF044323
Cellular macromolecule metabolic process 0.028 0.103 AF044323
Secondary metabolic 0.029 0.103 AF044323
Pigment biosynthetic process 0.029 0.103 AF044323
Pigment metabolic process 0.029 0.103 AF044323
Cellular protein metabolic process 0.034 0.109 AF044323
Mitochondrial membrane 0.035 0.109 AF044323
Cytoplasm 0.039 0.115 AF044323, K01171
heme biosynthetic process 0.047 0.125 AF044323
heme metabolic process 0.047 0.125 AF044323
heterocycle metabolic process 0.067 0.169 AF044323
Macromolecular complex assembly 0.082 0.198 AF044323
Cofactor biosynthetic process 0.106 0.244 AF044323
Protein complex assembly 0.111 0.245 AF044323
Cofactor metabolic process 0.134 0.284 AF044323
Mitochondrial inner membrane 0.143 0.292 AF044323
receptor activity 0.184 0.349 X00452
Multicellular organismal development 0.191 0.349 X82240
Transmembrane receptor activity 0.191 0.349 X00452
Organelle inner membrane 0.200 0.349 AF044323
Cellular protein complex assembly 0.209 0.349 AF044323
envelope 0.217 0.349 AF044323
Organelle envelope 0.217 0.349 AF044323
Organelle part 0.324 0.467 AF044323
Intracellular organelle part 0.324 0.467 AF044323
Inorganic cation transmembrane transporter activity 0.324 0.467 AF044323
Mitochondrial membrane part 0.326 0.467 AF044323
Cytochrome c oxidase activity 0.356 0.497 AF044323

Table 5. Three criteria for model evaluation.

criteria Model with 3 genes identified  
by the proposed method

Model with 12 genes Model with 2 genes  
identified by the GSEA

P-value of the log-rank test 0.002 0.007 0.246
P-value of the prognostic  
index

0.002 0.002 0.120

Deviance −8.942 −9.072 −1.967
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by the GSEA. For the validation data including 
80 patients, the following 3 criteria were calculated: 
P-value for the log-rank test, P-value for the prog-
nostic index, and deviance. The 80 patients were 
categorized into 2 groups by the boundary of the 
median of prognostic index Tˆ xi iη β= ; the “better” and 
“worse” prognostic groups. The Kaplan-Meier curves 
between the 2 groups were compared by the log-rank 
test. Next, we calculated the P-value for the parame-
ter α multiplied by the prognostic index ˆ

iη  in the Cox 
proportional hazard model ( ) 0

ˆ| x ( ) exp ( )i ih t h t αη= .  
Finally, the deviance was calculated by   
 
and l(validation) (0) are the Cox log partial-likelihood 
function for the estimated coefficients by using 
training data and zero vector 0, respectively. For 
each criterion, the smaller value suggests better pre-
diction accuracy. The values of the 3 indices for the 
3 models—the proposed method that identified 3 TP 
genes, the lasso method that identified 12 genes, and 

the GSEA that identified 2 TP genes—are shown 
in Table 5. As shown in Table 5, the values of the 
3 indices between the models that identified 3 and 
12 TP genes are almost the same. Furthermore, the 
prediction accuracy of the proposed method was 
found to be better than that of the GSEA. In addi-
tion, the Kaplan-Meier curves of the overall survival 
for the proposed and lasso methods were also simi-
lar (Fig. 2). Figure 2 shows that the difference in the 
overall survival between the 2 groups was signifi-
cant for the proposed method, but not for the modi-
fied GSEA. Thus, by using the proposed method, we 
are able to exclude the genes that are not likely to 
impact the survival outcome.

Discussions and conclusions
In this study, we developed a method to estimate 
FPR by assuming the mixture distribution com-
prising the Laplace and normal distributions on 
the lasso estimates. In practice, we identified the 

1.0

A B

C

0.8

0.6

0.4

0.2

0.0
0 5 10 15 20 25

1.0

0.8

0.6

0.4

0.2

0.0
0 5 10 15 20 25

1.0

0.8

0.6

0.4

0.2

0.0

0 5 10

Years

P
ro

p
o

rt
io

n
 s

u
rv

iv
in

g

Years

P
ro

p
o

rt
io

n
 s

u
rv

iv
in

g

Years

P
ro

p
o

rt
io

n
 s

u
rv

iv
in

g

15

“Better” prognostic group

“Worse” prognostic group

20 25

Figure 2. Kaplan-Meier curves of overall survival for the 2 groups; (A) in the models that identified 3 genes by the proposed method, (B) in the models 
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outcome-predictive genes by performing the lasso, 
and  subsequently, removing the FP genes using the 
 proposed method.

Although the penalized regression analyses includ-
ing the lasso are attractive in the high- dimensional 
microarray data, it is difficult to identify the outcome-
predictive genes without FP genes by using these 
methods. Utilizing the proposed method, we can 
validate the results of the lasso, and identify the 
outcome-predictive genes more precisely. The assumed 
mixture distribution was formulated considering the 2 
features of the lasso, although it may be a “somewhat 
complex” distribution. The validity of this assump-
tion was demonstrated through the simulation studies. 
Specifically, the accuracy of the FPR estimated by the 
proposed method was satisfactory in many cases. The 
accuracy was slightly decreased for the larger value of 
tuning parameter λ, but the underestimation of FPR 
may be acceptable in practice, as discussed in the Sim-
ulation section.

In the section on Application to the DLBCL Data, 
the utility of the proposed method was illustrated. We 
were able to eliminate the FP genes from the genes 
selected by the lasso with λ = 27, and improved 
the accuracy of prediction of the model. We further 
identified the TP genes and examined the prediction 
accuracy of overall survival based on them, using the 
proposed method and GSEA. Both methods identi-
fied no TP genes in common. The prediction accuracy 
using the 3 genes identified by the proposed method 
outperformed that using the 2 genes identified by the 
GSEA. The GSEA introduced by the Subramanian 
et al20 evaluates microarray data at the level of gene 
sets. The gene sets are defined based on prior bio-
logical knowledge, eg, published information about 
biochemical pathways or coexpression in previous 
experiments. In contrast, the proposed method evalu-
ates microarray data at the level of genes and does not 
use prior biological knowledge when identifying the 
outcome-predictive genes.

Some variants of the lasso and penalized  regression 
methods are used, eg, smoothly clipped absolute 
deviation penalty (SCAD),22 adaptive lasso,23,24 
elastic net,16 and ridge regression,25 but of these, we 
chose the lasso in this study, because of our con-
cerns regarding the high possibility of missing the 
true positives for the SCAD and adaptive Lasso, the 

difficulty in choosing 2 penalties for the elastic net, 
and the absence of any property to select genes for 
ridge regression.10

The determination of the value of the tuning param-
eter is required when performing the lasso. The value 
of λ is frequently determined on the basis of the cross 
validation that evaluates the adequacy of the model, 
as explained in the Methods section. By utilizing the 
proposed method, we could also determine the value 
of λ by considering not only the prediction accuracy 
but also the FPR.

In conclusion, the lasso allows us to efficiently 
select the outcome-predictive genes in the high-
dimensional microarray data, but the difficulty lies 
in the inclusion of the FP genes among the selected 
genes. The use of the proposed method allows us 
to eliminate these genes and improve the prediction 
accuracy of the Cox model.
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