Close
Help
Need Help?





JOURNAL

Cancer Informatics

1,137,010 Journal Article Views | Journal Analytics

A Jackknife and Voting Classifier Approach to Feature Selection and Classification

Submit a Paper



Publication Date: 27 Apr 2011

Type: Methodology

Journal: Cancer Informatics

Citation: Cancer Informatics 2011:10 133-147

doi: 10.4137/CIN.S7111

Abstract

With technological advances now allowing measurement of thousands of genes, proteins and metabolites, researchers are using this information to develop diagnostic and prognostic tests and discern the biological pathways underlying diseases. Often, an investigator's objective is to develop a classification rule to predict group membership of unknown samples based on a small set of features and that could ultimately be used in a clinical setting. While common classification methods such as random forest and support vector machines are effective at separating groups, they do not directly translate into a clinically-applicable classification rule based on a small number of features.We present a simple feature selection and classification method for biomarker detection that is intuitively understandable and can be directly extended for application to a clinical setting. We first use a jackknife procedure to identify important features and then, for classification, we use voting classifiers which are simple and easy to implement. We compared our method to random forest and support vector machines using three benchmark cancer ‘omics datasets with different characteristics. We found our jackknife procedure and voting classifier to perform comparably to these two methods in terms of accuracy. Further, the jackknife procedure yielded stable feature sets. Voting classifiers in combination with a robust feature selection method such as our jackknife procedure offer an effective, simple and intuitive approach to feature selection and classification with a clear extension to clinical applications.


Downloads

PDF  (1.16 MB PDF FORMAT)

RIS citation   (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)

BibTex citation   (BIBDESK, LATEX)

XML

PMC HTML


Sharing




What Your Colleagues Say About Cancer Informatics
I would like to extend my gratitude for creating the next generation of a scientific journal -- the science journal of tomorrow. The entire process bespoke of exceptional efficiency, celerity, professionalism, competency, and service.
Dr Jason B. Nikas (Medical School University of Minnesota, Minneapolis, MN, USA)
More Testimonials

Quick Links




Follow Us We make it easy to find new research papers.
Email Alerts RSS Feeds
Facebook Google+ Twitter
Pinterest Tumblr YouTube




SUBJECT HUBS
Author Survey Results
author_survey_results
All authors are surveyed after their articles are published. Authors are asked to rate their experience in a variety of areas, and their responses help us to monitor our performance. Presented here are their responses in some key areas. No 'poor' or 'very poor' responses were received; these are represented in the 'other' category.
See Our Results