Close
Help
Need Help?



Standardization of Gene Expression Quantification by Absolute Real-Time qRT-PCR System Using a Single Standard for Marker and Reference Genes

Submit a Paper



Publication Date: 16 Aug 2010

Type: Methodology

Journal: Biomarker Insights

Citation: Biomarker Insights 2010:5 79-85

doi: 10.4137/BMI.S5596

Abstract

In the last decade, genome-wide gene expression data has been collected from a large number of cancer specimens. In many studies utilizing either microarray-based or knowledge-based gene expression profiling, both the validation of candidate genes and the identification and inclusion of biomarkers in prognosis-modeling has employed real-time quantitative PCR on reverse transcribed mRNA (qRT-PCR) because of its inherent sensitivity and quantitative nature. In qRT-PCR data analysis, an internal reference gene is used to normalize the variation in input sample quantity. The relative quantification method used in current real-time qRT-PCR analysis fails to ensure data comparability pivotal in identification of prognostic biomarkers. By employing an absolute qRT-PCR system that uses a single standard for marker and reference genes (SSMR) to achieve absolute quantification, we showed that the normalized gene expression data is comparable and independent of variations in the quantities of sample as well as the standard used for generating standard curves. We compared two sets of normalized gene expression data with same histological diagnosis of brain tumor from two labs using relative and absolute real-time qRT-PCR. Base-10 logarithms of the gene expression ratio relative to ACTB were evaluated for statistical equivalence between tumors processed by two different labs. The results showed an approximate comparability for normalized gene expression quantified using a SSMR-based qRT-PCR. Incomparable results were seen for the gene expression data using relative real-time qRT-PCR, due to inequality in molar concentration of two standards for marker and reference genes. Overall results show that SSMR-based real-time qRT-PCR ensures comparability of gene expression data much needed in establishment of prognostic/predictive models for cancer patients—a process that requires large sample sizes by combining independent sets of data.


Downloads

PDF  (898.57 KB PDF FORMAT)

RIS citation   (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)

BibTex citation   (BIBDESK, LATEX)

XML

PMC HTML


Sharing

Our Service Promise

  • Prompt Processing (3 Weeks to Editorial Decision)
  • Fair, Independent Peer Review
  • High Visibility & Extensive Indexing
What Your Colleagues Say About Biomarker Insights
testimonial_image
I have had a great experience with submitting my cancer prognosis study to Biomarker Insights. The comments from reviewers and associate editor are high quality and insightful. Congratulations and keep up the good work.
Dr Yi Hong Zhou (University of California, Irvine, CA, USA)
More Testimonials

Quick Links

Follow Us We make it easy to find new research papers.
Email AlertsRSS Feeds
FacebookGoogle+Twitter
PinterestTumblrYouTube

SUBJECT HUBS
Author Survey Results
author_survey_results
All authors are surveyed after their articles are published. Authors are asked to rate their experience in a variety of areas, and their responses help us to monitor our performance. Presented here are their responses in some key areas. No 'poor' or 'very poor' responses were received; these are represented in the 'other' category.
See Our Results