Publication Date: 17 Nov 2009
Type: Original Research
Journal: Bioinformatics and Biology Insights
A signal transduction pathway (STP) is a cascade composed of a series of signal transferring steps, which often activate one or more transcription factors (TFs) to control the transcription of target genes. Understanding signaling pathways is important to our understanding of the molecular mechanisms of disease. Many condition-annotated pathways have been deposited in public databases. However, condition-annotated pathways are far from complete, considering the large number of possible conditions. Computational methods to assist in the identification of conditionally activated pathways are greatly needed. In this paper, we propose an efficient method to identify conditionally activated pathway segments starting from the identification of conditionally activated TFs, by incorporating protein-DNA binding data, gene expression data and protein interaction data. Applying our methods on several microarray datasets, we have discovered many significantly activated TFs and their corresponding pathway segments, which are supported by evidence in the literature.
PDF (600.34 KB PDF FORMAT)
RIS citation (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)
BibTex citation (BIBDESK, LATEX)
PMC HTML
Bioinformatics and Biology Insights fills a gap in current journals. Ever more often, bioinformatics and detailed analysis of data creates novel, unexpected insights. It is good to have a journal which focusses on exactly this aspect of bioinformatics research, putting the biology insights upfront with high respect for the different methods in bioinformatics.
All authors are surveyed after their articles are published. Authors are asked to rate their experience in a variety of areas, and their responses help us to monitor our performance. Presented here are their responses in some key areas. No 'poor' or 'very poor' responses were received; these are represented in the 'other' category.See Our Results
Copyright © 2013 Libertas Academica Ltd (except open access articles and accompanying metadata and supplementary files.)
FacebookGoogle+Twitter
PinterestTumblrYouTube