Close
Help
Need Help?



Robust Model Selection for Classification of Microarrays

Submit a Paper


Libertas Press Analytics


2233 Article Views

Publication Date: 25 Jun 2009

Journal: Cancer Informatics 2009:7 141-157

CI
journal

275,730 Article Views

2,621,731 Libertas Article Views

More Statistics

Abstract Recently, microarray-based cancer diagnosis systems have been increasingly investigated. However, cost reduction and reliability assurance of such diagnosis systems are still remaining problems in real clinical scenes. To reduce the cost, we need a supervised classifier involving the smallest number of genes, as long as the classifier is sufficiently reliable. To achieve a reliable classifier, we should assess candidate classifiers and select the best one. In the selection process of the best classifier, however, the assessment criterion must involve large variance because of limited number of samples and non-negligible observation noise. Therefore, even if a classifier with a very small number of genes exhibited the smallest leave-one-out cross-validation (LOO) error rate, it would not necessarily be reliable because classifiers based on a small number of genes tend to show large variance. We propose a robust model selection criterion, the min-max criterion, based on a resampling bootstrap simulation to assess the variance of estimation of classification error rates. We applied our assessment framework to four published real gene expression datasets and one synthetic dataset. We found that a state- of-the-art procedure, weighted voting classifiers with LOO criterion, had a non-negligible risk of selecting extremely poor classifiers and, on the other hand, that the new min-max criterion could eliminate that risk. These finding suggests that our criterion presents a safer procedure to design a practical cancer diagnosis system.


Post a Comment

x close

Discussion Add A Comment
No comments yet...Be the first to comment.


share on

Our Service Promise

  • Prompt Processing (Average 3 Weeks)
  • Fair & Constructive Peer Review
  • Professional Author Service
  • High Visibility
  • High Readership
  • What Our Authors Say

Quick Links

Follow Us We make it easy to find new research papers. RSS Feeds Email Alerts Twitter

BROWSE CATEGORIES
Our Testimonials
I had an excellent experience publishing our review article in Clinical Medicine Reviews.  The managing editor was very helpful and the process was very timely and transparent.
Professor Jonathan A. Bernstein (University of Cincinnati College of Medicine, Division of Immunology, Allergy Section, Cincinnati, OH, USA) What our authors say