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Abstract: Recently, microarray-based cancer diagnosis systems have been increasingly investigated. However, cost reduction and 
reliability assurance of such diagnosis systems are still remaing problems in real clinical scenes. To reduce the cost, we need a supervised 
classifier involving the smallest number of genes, as long as the classifier is sufficiently reliable. To achieve a reliable classifier, we 
should assess candidate classifiers and select the best one. In the selection process of the best classifier, however, the assessment criterion 
must involve large variance because of limited number of samples and non-negligible observation noise. Therefore, even if a classifier 
with a very small number of genes exhibited the smallest leave-one-out cross-validation (LOO) error rate, it would not necessarily be 
reliable because classifiers based on a small number of genes tend to show large variance. We propose a robust model selection criterion, 
the min-max criterion, based on a resampling bootstrap simulation to assess the variance of estimation of classification error rates. We 
applied our assessment framework to four published real gene expression datasets and one synthetic dataset. We found that a state-
of-the-art procedure, weighted voting classifiers with LOO criterion, had a non-negligible risk of selecting extremely poor classifiers 
and, on the other hand, that the new min-max criterion could eliminate that risk. These finding suggests that our criterion presents a safer 
procedure to design a practical cancer diagnosis system.
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1. Introduction
Microarray technology1 has been applied to predict 
prognosis of cancer patients by comparing gene 
expression profiles in cancer tissue samples, and its 
predictive power has been demonstrated for many 
types of cancers.2–5 The prognosis prediction systems 
based on microarrays have been expected to be new 
efficient bio-markers that enable personalized cancer 
medicine.6 We consider, in this paper, two problems 
in expanding the use of microarray-based prediction 
systems in real clinical scenes, namely, observation 
cost and reliability.7

To reduce the observation cost without losing 
reliability, there have been several efforts to design 
diagnosis systems involving small numbers of 
specially selected genes. Recently, specialized 
diagnostic microarrays harboring small numbers of 
genes, to say tens or hundreds genes, are developed 
based on a supervised analysis with a dataset taken by 
a full microarray system involving thousands or tens of 
thousands of genes.5,8,9 Measurement cost per patient 
becomes smaller by reducing the number of genes that 
is involved in such a system. If number of spots on a 
chip is fixed, more spots corresponding to a single 
gene can be included in a chip, which enables more 
reliable measurement by averaging multiple spots 
of same genes, and/or more efficient measurement 
by diagnosing multiple patients simultaneously in 
a single chip.8 Manufacturing cost of a chip can be 
reduced by designing mini-chip harboring small 
number of spots.5

To achieve a reliable predictor, a well-known 
trade-off problem exists even if the above-mentioned 
issue of observation cost is omitted; we should 
select as large a number of informative genes and 
as small a number of non-informative genes as 
possible. We often need a certain number of genes 
to gain prediction accuracy, partly because multiple 
informative genes tend to provide different kinds of 
information which are complementary to each other 
for the prediction, and partly because, even when a 
set of multiple genes provides identical information, 
observation noise can be reduced by averaging them. 
On the other hand, since the prediction error increases 
when non-informative genes are included, we need to 
reduce the number of non-informative genes, putting 
the observation cost aside. These two demands are a 
trade-off because the process of determining whether 

each gene is informative or non-informative itself is 
not always reliable enough, due to non-negligible 
noise and a limited number of observations.

In summary, our goal can be stated as to achieve a 
reliable predictor based on as few genes as possible, 
which is accomplished in a supervised analysis with 
the following three processes:

•	 a gene selection process,
•	 a supervised learning process that constructs 

predictors based on a labeled set of expression 
data of the selected genes, and

•	 an assessment process for the constructed candidate 
predictors.

There have been many options proposed for 
the first two processes, and comparisons of their 
combinations were made from the viewpoint of 
prediction error rates on test datasets, namely 
generalization performances.10,11 In the present study, 
we use the following two procedures that were applied 
in the previous study.12

•	 Weighted voting (WV) classifier13 with gene 
selection based on absolute t-score (T-WV)

•	 Linear-kernel support vector machine (SVM)14 
with recursive elimination of genes that have 
the smallest contribution to current classification 
performance (R-SVM).15

These procedures construct multiple candidate 
predictors with various numbers of genes included 
in the predictors. Since their prediction performances 
for independent test datasets depend on the number of 
genes, their assessment is crucial.

In the assessment process, the prediction 
performance of each candidate predictor is estimated 
based on the training data, and good estimation is 
obtained by reducing the estimation bias and the 
variance. Since the true performance on independent 
data in the future is unknown, we should select the 
best predictor with less bias and smaller variance 
of the estimated performance. In general, the 
bias-variance trade-off problem is inherent to all 
statistical models used for prediction, especially 
in the classification framework.16,17 For prognosis 
prediction by microarray, several past studies focused 
on reducing the estimation biases of the prediction 
error rates in determining the best model18–20 because 
inclusion of biases could lead to over-estimation of 
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the classification performance of the proposed system. 
The cross-validation (CV) technique is used widely 
for predicting true classification error rate in samples 
that are not included in either the training or the test 
sample sets. Among the CV methods, the leave-one-
out cross-validation technique (LOO) is often used 
because of its small bias.18 These studies, however, 
paid little attention to the variances of estimated 
classification error rates.

The estimated variances in the assessment process 
are important for practical applications. Even if a 
classifier has a sufficiently low error rate accompanied 
instead by large variance in prediction, it suffers from 
a high risk of having a large actual error rate when 
applied to unknown test samples.21 The LOO criterion 
sometimes selects a classifier involving a very small 
number of genes, or even a single gene. Although the 
single-gene classifier fits the ‘as few genes as possible’ 
criterion, classifiers involving redundant genes tend 
to exhibit lower noise and provide better prognosis.9 
Several recent methods consider the estimated error 
rate variances,21–24 and unsupervised methods25,26 also 
minimize the variance of the model by focusing on the 
stability of the signatures instead of on the supervised 
class labels. However, there has been no discussion 
from the viewpoint of mini-chip design, namely, to 
explore a reliable predictor based on as few genes as 
possible.

In the present study, we consider both the bias and 
the variance of performance estimation so as to achieve 
a reliable predictor. We applied a bootstrap sampling 
method to estimate the distribution of possible error 
rates, with bias and variance, and propose a min-max 
criterion to obtain a stable classifier. We conducted 
a simulation study and found that the min-max 
criterion tends to select better candidate predictors 
than the LOO criterion, especially when the number 
of samples is small. We then compared two supervised 
analysis procedures, T-WV and R-SVM, and showed 
that T-WV achieves reliable predictors with a small 
number of genes, indicating that T-WV with the min-
max criterion is desirable for our purpose of obtaining 
a reliable predictor with as few genes as possible.

2. Methods
2.1. Notations
Let xi = (xi1, ..., xim

) be a vector of the M-dimensional 
gene expression profile of the i-th sample, and yi 

a binary class label yi ∈ {-1,1} representing the 
binary status of the i-th sample, for example, tumor or 
non-tumor. The numbers of samples in the negative 
( yi = -1) and positive (yi = 1) classes are denoted 
as nn and np, respectively. Suppose that we have a 
dataset D = {di |i = 1, ..., N } including N samples, 
where di = (xi, yi) is a pair of input (expression) and 
output (class label) of the i-th sample. By applying a 
supervised machine learning method to the dataset D, 
we construct a discriminant function h(x | D) such that 
we predict a label ˆ( )y x'  for a new input x' by
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2.2. T-WV method
The WV method is a typical supervised machine 
learning method that employs the top k significant 
genes. Since the significance of the j-th gene is 
defined according to the following t-score, the entire 
procedure is referred to as the T-WV method,

	 t x x
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where xpj and xnj are the average expression levels 
of the j-th gene over the training samples labeled 1 
and –1, respectively, and Sj

2 is the pooled within-class 
variance of the j-th gene,
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The genes are ranked according to the absolute 
value of |tj|, and the top-ranked k genes are selected 
as significant genes so that the set of these genes is 
denoted as Ck. The discriminant function obtained by 
the T-WV method is then constructed as

	 h x D
k

t x xk j j j
j Ck

( | ) ( ),= -
∈
∑1 � (4)

where x
N

xj j
N

ij≡ 1 Σ  is the average expression level of 
the j-th gene in the training samples.

In the discriminant function hk, the difference 
between the j-th gene expression and its average is 
weighted by its significance, i.e. the t-score. Note that 
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the function hk depends on the number k of significant 
genes, and thus we need to specify k appropriately.

2.3. R-SVM method
R-SVM is another typical supervised machine learning 
method, which was developed to select important 
genes for SVM classification.15 An R code package 
is publicly available at http://www.hsph.harvard.edu/
bioinfocore/R-SVM.html. The discriminant function 
of a linear SVM is defined as

	 h x D w x b y x x bk i i i
i

N

( | ) ( ) ( ) ,′ = ⋅ ′ + = ⋅ ′ +
=
∑α
1

� (5)

where x′ is a new input expression vector and xi is the 
i-th sample expression vector in the training dataset. 
αi and b are parameters to be determined so that training 
data points with different class labels are classified 
with the largest margin. x x’ x x’j

M

j j⋅ = ∑ =1  denotes the 
inner product. Each element of w, wj, is defined as

	w y xj i i ij
i

n

=
=
∑α ,
1

� (6)

the absolute value |wj| of which represents the 
significance weight of the jth gene in the current 
discriminant function.

As in the T-WV method, the classification 
performance of SVM also depends on gene subset 
selection. R-SVM applies a recursive feature 
elimination (RFE) procedure.27 In RFE, less 
significant genes in the current discriminant function 
are recursively eliminated, and the next discriminant 
function is constructed based on the new, smaller set 
of genes. Consequently, a sequence of discriminant 
functions with decreasing numbers of genes is 
constructed. Thus, the prediction performance of each 
discriminant function hk depends on the number k of 
significant genes, which causes the same problem as 
in T-WV, i.e. setting an appropriate number k. In the 
following section, we describe a common way to set 
the number of genes in both T-WV and R-SVM.

2.4. LOO model selection
T-WV and R-SVM, both produce many candidate 
classifiers, from which we should select the best one by 
an assessment process. Although the true performance 
of a classifier is measured as classification accuracy 

on an unknown dataset given in the future, we should 
instead estimate the performance using the dataset 
obtained in the assessment process. Note that we 
refer to each candidate in the assessment process as a 
model, to clarify that we are assessing all procedures 
used to construct a classifier rather than assessing 
solely the classifier. In T-WV and R-SVM, a model is 
characterized by the number of significant genes that 
it includes.

The LOO procedure has been widely used to 
estimate, or predict, the future performance of a 
classifier. In LOO, a classifier h is built using each 
leave-one-out dataset D–i, i = 1, ..., N; that is, the i-th 
sample di is excluded in the training procedure from 
the dataset D, and becomes a validation sample. The 
classification performance of h is assessed using the 
validation sample. After the assessments for d1, ..., dN, 
the LOO error rate of the classifier h, G

loo
(h | D), is 

calculated as the averaged error rate

	 G h D
N

I y h x Di i
i

i

N
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where I(R) denotes the indicator function that takes 
a value of one if condition R holds, and is otherwise 
zero. When we select the number k of significant 
genes by

	 h G h Dk
k

k
LOO

LOO= argmin ( | ), � (8)

this model selection is said to be based on the LOO 
criterion.

2.5. Resampling bootstrap method
It is known that the error rates used to estimate 
the LOO procedure are nearly unbiased. Molinaro 
et al18 compared estimated generalization error rates 
between different resampling methods and showed 
that LOO had the smallest bias for a simulation dataset 
and a real microarray dataset. However, LOO has a 
tendency to include large variance, despite its small 
bias,28 because classifiers constructed based on the 
leave-one-out datasets, D–i, are quite similar to each 
other, whereas the data points used for validation vary 
widely. The large variance of the error rate estimation 
leads to a high risk of selecting a classifier whose 
‘true’ performance is poor, and this risk becomes 
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higher as the number of candidates becomes larger. 
When we assess the performance of many candidate 
classifiers with large variances, some of the candidates 
often exhibit remarkably low errors, even if their true 
performance is poor. This is the same problem as 
overfitting, which was originally found in parametric 
learning especially when there are many parameters 
to be learnt. Therefore, it is important to reduce the 
estimation variance to obtain a robust classifier.

We applied a bootstrap method to simulate 
possible variation of the given dataset and to obtain 
the distribution of LOO error rates over the range 
of that variation. We generated bootstrap datasets 
{D*b | b = 1, ..., B}, in which each bootstrap dataset 
is defined as

	 D d x y r Nb

r

b

r

b

r

b* * * *{ ( , ) | , ..., },= = = -1 1 � (9)

where dr
b*  is randomly sampled with replacements 

from the LOO dataset D–i. The single validation sample 
di is evaluated by the classifiers that were trained by 
different datasets D*b, leading to a set of LOO error rates: 
G h D G h D G h D hk k k

B B

k

b

LOO LOO LOO( | ), ( | ), ..., ( | ). ,* * * * * * *1 1 2 2  
b B=1, ..., , is given by Eq. (4) after replacing the 
dataset D with the bootstrap dataset D*b. This set of 
LOO error rates is considered to be a distribution of 
G

loo
 and provides a guideline to determine the number 

of genes used in the T-WV classifier.

2.6. Min-max model selection
Using the simulated distribution of LOO error rates, 
{ ( | )} ,* *G h Dk

b b

b

B

LOO =1  we defined a risk score called 
a min-max criterion,

	G h D G h Dk k

b b

b

B

BOOT LOOPer95( | ) { ( | )} ,* *= ( )=1 � (10)

where ‘Per95’ denotes the 95th percentile of the set of 
values. Based on this risk score, an appropriate model 
(i.e. the number of genes, k) is selected as

	 h G h Dk k
k

BOOT

BOOT= argmin{ ( | )}. � (11)

We considered the 95th percentile with the number 
of bootstrap B = 100 as the representative of possible 
high error rates for each model with different numbers 

of genes. The 95th percentile is a robust criterion to 
estimate the risk of selecting a bad model against 
the possibly asymmetric nature of the error rate 
distribution.

Our approach is referred to as the “min-max” 
selection criterion because we minimized the risk of 
selecting a model for which the expected prediction 
error rate was almost the maximum in the distribution 
of possibilities. This min-max model selection is 
likely to refuse classifiers for which the estimated 
error rates are distributed with a large variance, even 
if LOO shows the lowest error rate from a single 
dataset. Therefore, the min-max criterion reduces the 
instability stemming from the variation of possible 
future datasets that could be simulated by random 
sampling from a large pool of samples.

In other words, the min-max criterion assumes an 
underlying game between an analyzer and nature. 
A dataset is given by nature, and a model is selected 
by an analyzer. For the analyzer to achieve stability, 
one good idea is to minimize the risk (Eq. (11)), 
which stems from the possibility that nature could 
provide a bad situation (and hence the classifier has 
been over-trained) (Eq. 10).

The number 95 of the percentile and number of 
bootstrap B = 100 were determined arbitrarily by 
considering trade-offs between computation time, 
estimation variance of the percentile point, and 
appropriateness as a representative of high error rates:

•	 The computation time is proportional to the number 
of bootstrappings.

•	 Estimation variance is a monotonic function of 
both the percentile number and the number of 
bootstrappings. Namely, the variance becomes 
large as the percentile number diverges from 50 
and as the number of bootstrappings is small.

•	 The criterion should evaluate possible high error 
rates even when the distribution of bootstrap 
samples is asymmetric.

We did not select the 50th percentile, i.e. the 
median, because of the third reason above; we 
attempted to obtain a safe classifier rather than to 
show good average performance. Although the 99th 
percentile could be another representative of possible 
high error rates, we rejected it, because it relies on 
1% of bootstrap samples, and will therefore lead to 
high variance especially with small B. The estimation 

http://www.la-press.com


Suzuki et al

146	 Cancer Informatics 2009:7

variance of each percentile of the bootstrap error rate 
can be evaluated in terms of the standard deviation 
of the corresponding order statistic if the distribution 
of error rates is known. Table 1 shows the standard 
deviations (SDs) of several percentiles when the 
distribution of error rates is a standard normal 
distribution. These SDs are proportional to the SD of 
the distribution of error rates, implying that the SDs 
of the percentiles can represent their variation well 
even for non-normal distributions.

3. Results
3.1. Results for real datasets
We evaluated our method using four published real 
gene expression profile datasets:

•	 Breast cancer
	 van’t  Veer et al3 obtained gene expression 

microarray data for approximately 5,000 genes for 
78 + 19 breast cancer tissue samples. The samples 
were classified into favorable and unfavorable 
samples: patients with recurrence-free survival 
in five years and those with recurrence in five 
years, respectively. The authors trained supervised 
classifiers using 78 samples (34 favorable and 
44 unfavorable samples), which we call the 
training dataset, and tested using 19 independent 
samples (7 favorable and 12 unfavorable samples), 
which we call the test dataset. The same group also 
provided a larger dataset consisting of 295 samples.29 
Among the 295 samples, 32 samples were also 
included in the former dataset3 and 10 samples 
were censored in five years; hence, we used the 
remaining 253 (192 favorable and 61 unfavorable) 
samples for the second test dataset.

•	 Colon cancer
	 The colon cancer dataset30 contains microarray 

expression data for 2,000 genes for 62 colon tissues. 

Among the 62 tissue samples, 40 and 22 were 
labeled as “tumor” and “normal,” respectively, 
and these were used as the labels to be predicted.

•	 Neuroblastoma (NBL)
	 The NBL dataset5 consists of microarray 

expression data for 5,180 genes for 136 patients. 
Among the 136 samples, 25 and 102 were labeled 
as “favorable” and “unfavorable” patients, 
respectively, according to their status at 24 months 
after diagnosis, and these were used as the labels 
to be predicted. The remaining nine samples of 
unknown status at 24 months after diagnosis were 
omitted.

•	 Breast cancer Affymetrix (Affymetrix)
	 Wang et al31 analyzed 286 breast cancer patients 

with an Affymetrix chip harboring 22,283 genes. 
Among the 286 patients, 183 and 93 were labeled 
as favorable and unfavorable, respectively, and 
these were used as the labels to be predicted. We 
omitted 10 samples which were censored in five 
years. Although this dataset concerned breast 
cancer, we did not consider relationship between 
this set and the breast cancer datasets at the top of 
this list because these two datasets were assembled 
by entirely different systems and hence had fairly 
different characters in distribution. Considering 
different systems of microarrays together may be 
an important issue, but is beyond the scope of the 
current study.

For each of the above four datasets, we trained 
T-WV and R-SVM classifiers with various numbers 
of genes using the training samples, and assessed 
their classification errors in terms of LOO, 3-, 5- and 
10-fold-CV, and min-max criteria. In the case of 
the breast cancer dataset with large numbers of test 
samples,3,29 we also assessed their classification errors 
in the test datasets.

Figure 1 shows the results for the breast cancer 
dataset. The results with the T-WV classifier (left 
panel), indicated characteristic behaviors of the 
three criteria to assess the classification error rate, 
LOO (dashed line), 3-fold-CV (dotted line), and the 
proposed min-max criterion (solid line at the top of 
the blue area). The 90% interval of LOO error rates 
(blue area), which was estimated by the resampling 
bootstrap method, describes the estimation variance 
of error rates. The LOO error rate profile showed the 

Table 1. Estimated standard deviations of bootstrap 
percentiles. Bold type marks the setting which we used in 
the current study.

B = 100 B = 500 B = 1000
99th 0.315 0.171 0.120
95th 0.216 0.095 0.067
90th 0.172 0.077 0.054
50th 0.125 0.056 0.040
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lowest value with a small number of genes, k = 1, so 
that k = 1 was selected as the best number of genes 
by the LOO criterion. On the other hand, the 90% 
interval of the bootstrap distribution at k = 1 exhibited 
a large width in the error rate, and the 95th percentile 
error rate was above the chance level 0.5, suggesting 
large risk of the k = 1 classifier falling into a poor 
predictor around the chance level. Also, the LOO 
error rate at k = 1 was below both the 5th percentile 
and the 3-fold-CV error rate, indicating that the low 
LOO error rate at k = 1 could have been obtained by 
chance. The 3-fold-CV showed a smoother profile 
than those obtained by the LOO, and stayed in the 
midst of the 90% interval. The 3-fold-CV criterion 
selected a classifier with k = 5 where the 90% interval 
was narrower than that at k = 1. We also calculated 
5- and 10-fold-CVs and observed similar curves 
to that of the 3-fold-CV. The proposed min-max 
criterion, i.e. the 95th percentile, selected a larger 
number of genes, k = 590. The LOO and 3-fold-CV 
error rates at k = 590 were higher than those at k = 1 
and k = 5; however, we expected that the classifier 
of k = 590 would have a lower risk of being a poor 
predictor than those at k = 1 and k = 5.

In the right panel of Figure 1, a similar comparison 
is shown between LOO, 3-fold-CV, and the min-max 

criteria with the R-SVM classifier. The LOO criterion 
showed an instability similar to that of T-WV, so 
that the lowest LOO error rate at k = 376 seems to 
have been obtained by chance. All criteria selected 
larger numbers of genes than in the cases of T-WV 
classifiers.

In Table 2, test error rates of the selected 
predictors were assessed using two test datasets 
with 19 and 253 samples, where five criteria (LOO, 
min-max, and 3-, 5- and 10-fold-CVs) with two 
classifiers (T-WV and R-SVM) are compared. The 
min-max criterion outperformed the other criteria, 
LOO and k-fold-CVs, on both test sets. The LOO 
exhibited poor performance with 19 test samples 
and worse with 253 test samples whose test error 
rate was around the chance level. Intuitively, this 
result pointed out a defect of the LOO criterion in 
terms of the risk of taking a poor classifier, which has 
already been suggested by the 90% interval shown 
in Figure 1. The 3-, 5- and 10-fold-CVs achieved 
better performance in test error rates than LOO, but 
worse than the min-max criterion. T-WV tended to 
exhibit lower error rates than R-SVM with smaller 
numbers of genes, although we cannot conclude the 
general superiority of T-WV based on this single 
example.

Figure 1. Estimated classification errors in the breast cancer dataset. The left and right panels show the results obtained with the T-WV and R-SVM methods, 
respectively. The vertical and horizontal axes denote classification error rates estimated by various criteria and the number of genes included in each 
classifier, respectively. The 90% interval of resampling bootstrap of the estimated classification errors at each number of genes is denoted by blue areas. 
The classification errors estimated by the three criteria, min-max criterion (solid line on the top of blue area), LOO error rate (dashed line), and 3-fold-CV 
error rate (dotted line), are plotted against different numbers of genes. Vertical lines indicate the numbers of genes selected by the three criteria.
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Test error rates on 253 samples were significantly 
worse than the error rates on 19 samples, possibly for 
the following reasons:
•	 The 19 samples were by themselves easily 

classified.
•	 The number of samples (19) was too small to 

reproduce the error rate with low variance.
•	 The test data of 253 samples were gathered from 

different populations from those for the training 
data of 78 samples and the other test data of 
19 samples.

•	 The microarray measurement system differed 
between the two sets of data.
The considerations above will be important when 

designing mini-chips based on training datasets. 
Although the last reason, difference in microarray 
systems, may not be very serious in the case of this 

breast cancer dataset, it would be serious in the case 
designing a mini-chip, because differences between 
systems will probably be inevitable due to the 
reduction of system size from a full-size chip to a 
mini-chip.

We compared three criteria, LOO, min-max, 
and 3-fold-CV, with the two classifiers T-WV 
and R-SVM on the other three datasets (NBL, 
colon cancer and breast cancer Affymetrix) in 
Figures 2, 3 and 4, respectively. From the total 
comparisons over Figures 1–4, we observed the 
following tendencies:

•	 Although the error rates estimated by LOO 
fluctuate as the number of genes increases, they 
stay mostly within the 90% interval. This suggests 
that the LOO estimation of the tuned number of 
genes includes a large variance and the character 

Figure 2. Estimated classification errors in the colon cancer dataset. See Figure 1 legend for details.
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Table 2. Selected numbers of genes and corresponding test error rates in the breast cancer dataset with LOO, min-max, 
and k-fold CVs assessed by two test datasets with 19 and 253 test samples.

T-WV R-SVM
# Genes Test 19 Test 253 # Genes Test 19 Test 253

LOO 1 0.2105 0.4862 376 0.4737 0.4664
min-max 590 0.1578 0.2925 4,833 0.4211 0.3992
3-fold 5 0.3158 0.3992 4,833 0.4211 0.3992
5-fold 2 0.2632 0.4071 626 0.6316 0.5217
10-fold 1 0.2105 0.4862 376 0.4737 0.4664
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of the variance is well captured by the estimated 
90% interval.

•	 In contrast to the fluctuating profile of LOO error 
rates, the profiles of the 3-fold-CV and the 95th 
percentile (G

boot
) exhibit smoother curves. This 

suggests a more stable character for the 3-fold-CV 
and the min-max criterion than the LOO criterion.

•	 With T-WV, the 90% confidence interval was 
likely to be wide when the number of genes was 
small, k  10, indicating that prediction based 
on too few genes is risky; we occasionally get a 
model with poor performance. The 95th percentile 

is likely to show a higher error rate for a smaller 
number of genes, e.g. k  10, than for a large number 
of genes. Thus, the min-max criterion based on the 
95th percentile can avoid risky prediction so that a 
smaller error rate is achieved on average.

•	 The 3-fold-CV profile stayed almost in the middle 
of the 90% interval and showed a similar curve to 
the 95th percentile. However, there was difference 
between the 3-fold-CV and the 95th percentile in 
the range of 90% interval, which was prominent 
in T-WV with small numbers of genes, k  10. 
The 3-fold-CV and the min-max criterion lead 
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Figure 3. Estimated classification errors in the NBL dataset. See Figure 1 legend for details.
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to different numbers of genes being selected; 
relatively large numbers of genes are selected 
by the min-max criterion in comparison to the 
3-fold-CV.

•	 In the case of T-WV, the 90% interval was likely to 
be narrow for datasets with large sample sizes. The 
numbers of training samples were 78, 62, 127 and 
276, and the widths of the 90% interval were about 
0.15, 0.15, 0.1 and 0.07, for breast cancer, colon, 
NBL and Affymetrix datasets, respectively.

•	 In the case of R-SVM, LOO profiles fluctuated 
more than those of the min-max criterion, as well 
as with T-WV, suggesting that the min-max is a 
better model selection criterion than the LOO 
criterion.

•	 Whereas the best performance was comparable 
between R-SVM and T-WV, a larger number of 
genes was required to achieve the best performance 
by R-SVM than by T-WV. Thus, T-WV employing 
a relatively small number of genes is more 
suitable for practical clinical applications, which 
is consistent with a previous finding.12

•	 The confidence intervals for R-SVM were likely 
to be narrower than those for T-WV, implying that 
SVM, as a large margin classifier, is more stable 
against observation noise than T-WV. Even though 
we are not interested here in classifiers with a large 
number of genes, say k  1,000, this finding may 
be important for applications other than mini-chip 
construction.

•	 The Affymetrix data set was unbalanced, with the 
numbers of favorable and unfavorable samples 
being 183 and 93, respectively. This suggests that 
the error rate would become 0.34 if every label 
prediction is called favorable, which actually 
occurred for R-SVM with k  10. Therefore, the 
narrow confidence interval in such a case did not 
correspond with stable prediction.
The experiments showed that a reduction of risk is 

achieved by the proposed min-max criterion, and this 
was particularly convincing in the breast cancer dataset.

3.2. Simulation study on synthetic 
datasets
In the previous section, we tested our new criterion 
on four real datasets; however, the ground truth was 
unknown and the number of samples was limited in 
many cases, which prevented us from obtaining strong 

evidence for the superiority of the min-max criterion. 
We conducted a simulation study based on artificial 
datasets to prepare a sufficient number of test samples, 
which will be more realistic in future clinical studies.

We randomly generated expression profiles 
for 2,000 genes, where 30 out of the 2,000 were 
differentially expressed (DE) between two classes 
of samples and the others were not (non-DE). For 
non-DE genes, expression levels were generated 
from a normal distribution with mean zero, N(0,1), 
and for DE genes, the expression levels of samples 
with positive and negative class labels were generated 
from N(µ, 1) and N(–µ, 1), respectively, where we 
set µ = 0.5 for all DE genes. By this process, we 
generated synthetic datasets of 20 to 150 samples 
for training, and 1,000 samples for testing, where the 
numbers of samples with the two class labels were set 
to be equal.

The proposed simulation scheme is illustrated 
in Figure 5. For each training dataset, the candidate 
classifiers involving various numbers of genes were 
trained and assessed, and the best numbers of genes 
were selected by the LOO and the min-max criteria, 
where the number B of the bootstrap in the min-max 
procedure was set at 100. The performance of the 
finally selected classifier was then assessed by a test 
dataset with 1,000 samples. We repeated this process 
with a randomly generated training dataset and 
assessed the corresponding test error rates by using 
a test dataset of 1,000 samples. The distributions of 
the test error rates were compared between different 
conditions.

We designed the above setting to clarify how well 
the min-max criterion improves the model selection. 

simulation scheme 

Training dataset 

Classifier

h LOO
k

h BOOT
k

Weighted voting 

LOO model selection 

Min-max model selection 

Test dataset 

1,000 samples20–150 samples

Figure 5. Setting of the simulation experiment.
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The number of test datasets was set sufficiently 
large, and is commonly used in various settings of 
the other features to reduce the variance of error rates 
that stems from random sampling of the test dataset. 
The number of DE genes (30) and the strength of 
differential expression (µ = 0.5) were determined to 
examine typical situations that arise in realistic cases. 
We omitted other realistic features of datasets that may 
arise such as variation in the number of DE genes, 
strength µ, and the proportion of numbers of positive 
and negative samples, because they had shown no 
significant effect in our preliminary experiments. We 
also omitted correlations of gene expression patterns 

between DE genes because such correlations would 
not affect either T-WV or R-SVM.

Figure 6 shows the distributions of test error rates 
of the T-WV classifiers selected by LOO and min-
max, with 20, 50, 100 and 150 training samples. We 
found that there were certain levels of variance for 
both criteria, and the variance was larger for smaller 
numbers of samples. LOO sometimes showed 
much worse results than min-max, as indicated by 
the points in the bottom-right area of each panel in 
Figure 6. Note that the number of test samples, 1,000, 
was so large that there was no significant increase 
in sampling variance. Table 3 shows the means and 

Figure 6. Distribution of test error rates of T-WV. The vertical and horizontal axes denote the test error rates of classifiers selected by the min-max and 
LOO criteria, respectively. The results from 100 trials of random sampling of 20, 50, 100 and 150 samples are shown in the four panels.
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standard deviations of test error rates of the classifiers 
selected by LOO and min-max. Through 20–150 
training samples, min-max outperforms LOO in terms 
of smaller means and smaller standard deviations of 
test error rates.

We counted the number of true DE genes in the 
selected genes for each trial and found that the min-
max criterion tended to include many of the 30 true 
DE genes, and that the ratio of the true DE genes in the 
selected genes became large as the training samples 
increased. In contrast, LOO sometimes selected a 
very small number of genes, leading to large error 
rates. Both criteria occasionally selected more than 
30 genes, although this did not cause a large increase 
in the error if the selected genes included many of 
the true DE genes. As the number of training samples 
increased, the means and variances of test error rates 
became smaller, which is consistent with the previous 
observation. Even when the number of training 
samples increased and mean error rates decreased, 

however, the test error rates of LOO still showed 
larger variance than those of min-max.

We also conducted a similar simulation with 
R-SVM; the simulation settings were the same 
as those for T-WV except that we performed 50 
trials, (half the number used for T-WV), and we 
excluded the case of 150 samples because of the 
large computational cost of bootstrap simulation 
for R-SVM. Figure 7 shows the distributions of test 
error rates of R-SVM classifiers selected by LOO 
and min-max with 20, 50, and 100 training samples. 
A similar tendency to that of T-WV was observed in 
the cases of 50 and 100 samples, although in the case 
of 20 samples, the error rate was almost the chance 
level (0.5) for both the LOO and min-max criteria.

4. Concluding Remarks
In the present study, we investigated model selection 
methods with the aim of designing a reliable cancer 
prognosis predictor based on gene expression 

Table 3. Test error rate of simulation dataset.

Number of training samples Selection criterion Mean Standard deviation
20 LOO 0.241 0.077

min-max 0.210 0.064
50 LOO 0.042 0.024

min-max 0.026 0.012
100 LOO 0.015 0.013

min-max 0.006 0.003
150 LOO 0.012 0.010

min-max 0.004 0.002

0.
0 

   
 0

.1
   

   
0.

2 
   

 0
.3

   
  0

.4
   

   
0.

5 
   

 0
.6

0.
0 

   
 0

.1
   

   
0.

2 
   

 0
.3

   
  0

.4
   

   
0.

5 
   

 0
.6

0.0       0.1      0.2      0.3       0.4       0.5      0.60.0       0.1      0.2      0.3       0.4       0.5      0.6
error rate (LOO)

Er
ro

r r
at

e 
(m

in
−m

ax
)

20 Samples 

error rate (LOO)

50 Samples 

0.
00

   
0.

05
   

0.
10

   
 0

.1
5 

  0
.2

0 
   

0.
25

   
0.

30

0.00    0.05     0.10     0.15    0.20     0.25    0.30
error rate (LOO)

100 Samples
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microarrays involving as small a number of genes as 
possible. We assessed possible variation in prediction 
error rate of each microarray-based predictor by 
simulating a distribution of classification error rates 
via a resampling bootstrap method. Accordingly, 
we proposed a novel min-max criterion to select a 
predictor from multiple candidates. In numerical 
comparisons that used real and synthetic datasets, we 
showed that the conventional LOO estimation of their 
error rates resulted in large variances; consequently, 
the LOO criterion had a large risk of choosing 
inappropriate classifiers that would exhibit extremely 
poor prediction performance. In contrast, we showed 
the stability of the min-max criterion relative to 
well-established statistical criteria including the LOO. 
We also compared two different supervised analysis 
procedures, T-WV and R-SVM, and found that, in 
general, T-WV performed the best when it involved a 
small or moderate number of genes in contrast to that 
R-SVM performed the best when it involved almost 
all genes, although the mean and variance of the best 
possible performances were not always significantly 
different between those achieved with T-WV and 
R-SVM. Thus, overall, we concluded to recommend 
T-WV with the min-max criterion, which satisfied 
our demand; the most reliable predictor involving as 
small a number of genes.

It should be important to note that, we proposed 
our procedure to select a set of genes for designing 
a good predictor of cancer prognosis, rather than for 
determining a set of genes which have statistically 
significant relationship to the prognosis; these purposes 
are different from each other in general. In other 
words, the ‘robust’ model selection is meant to lower 
the risk to select an extremely poor predictor, rather 
than to select a stable set of genes. In fact, different 
research groups reported prognosis prediction systems 
with different sets of genes based on different sets 
of microarray data for the same type of cancer.6 The 
microarray-based predictors for breast cancer, were 
designed with 70 and 76 genes by two different research 
groups,3,31 respectively, and these gene sets had only 
three genes in common. Namely, the selected sets of 
genes were not stable at all, however, the 70 gene-
based diagnosis system of breast cancer have been 
verified by increasingly large number of new patients 
and authorized by Food and Drug Administration in 
USA.6 In our own numerical experiments, we also 

observed that number of common genes tended to 
be small between any gene sets that were selected 
based on different datasets generated by resampling 
bootstrap (data not shown), although we achieved 
good predictors in vast amount of the cases as we had 
shown. Thus, it should be emphasized that such an 
instable selection of gene subsets did not necessarily 
cause a poor predictor as long as the predictor was 
selected by a robust model selection method.

Once a prediction system based on a small number 
of genes is developed, the system can be transfered 
not only to mini-chip microarrays but also to other 
easy accessible devises such as quantitative real-time 
polymerase-chain-reaction (RT-PCR) analysis,32 which 
would be tractable if only tens of genes were targeted. 
Robust model selection methods, like the proposed 
one, will be needed especially when we consider such 
a transfer work between different measurement devises 
because large bias is often expected between different 
devises. In general, when a procedure is designed to be 
robust against measurement variance, such a method 
is also robust against an unknown bias which would 
appear like in the above transfer; thus, our min-max 
criterion will be used for this purpose.

In order to design a practical tool for real scenes in 
clinical cancer therapy, new demands in informatics 
can always arise. As we had seen in this study, although 
past efforts in informatics tended to pursue good 
performances in average, minimizing risk to catch 
poor predictor against possible variability in cancer 
diagnosis systems becomes a next issue. There are few 
methods to directly seek such risk minimization as 
long as we know. Reducing cost by selecting relevant 
genes based on high-dimensional gene expression 
profile is a relatively well-investigated field of 
research. However, the combination of the cost and 
reliability is not investigated well. Thus, there must 
be room to develop a novel supervised classification 
method that satisfies these demands for designing 
mini-chip systems, and future studies in cancer 
informatics should proceed to such directions.
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Supplementary Figures for “Robust Model Selection  
for Classification of Microarrays”

Ikumi Suzuki, Takashi Takenouchi, Miki Ohira, Shigeyuki Oba, and Shin Ishii

Figure S1. Distributions of test errors and numbers of selected true DE genes for various numbers of selected genes for T-WV classifiers based on 
20 artificial samples. Each point denotes one of 100 trials in each setting. Horizontal axes denote the number of genes selected by either LOO or min-max 
criterion. The vertical axes in the top two panels and the bottom two panels denote the test error estimated by 1000 test samples and the number of true 
DE genes in the selected set of genes, respectively.
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Figure S2. Distributions of test errors and numbers of selected true DE genes for various numbers of selected genes for T-WV classifiers based on 
50 artificial samples
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Figure S3. Distributions of test errors and number of selected true DE genes for various numbers of selected genes for T-WV classifiers based on 
100 artificial samples.
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