Close
Help
Need Help?



Grammatical Immune System Evolution for Reverse Engineering Nonlinear Dynamic Bayesian Models

Submit a Paper


Libertas Analytics


1427 Article Views

Publication Date: 28 Aug 2008

Journal: Cancer Informatics 2008:6 433-447

CI
journal

278,550 Article Views

2,650,081 Libertas Article Views

More Statistics

Abstract B.A. McKinney and D. Tian

Department of Genetics, University of Alabama School of Medicine, Birmingham, AL 35294.

Abstract

An artificial immune system algorithm is introduced in which nonlinear dynamic models are evolved to fi t time series of interacting biomolecules. This grammar-based machine learning method learns the structure and parameters of the underlying dynamic model. In silico immunogenetic mechanisms for the generation of model-structure diversity are implemented with the aid of a grammar, which also enforces semantic constraints of the evolved models. The grammar acts as a DNA repair polymerase that can identify recombination and hypermutation signals in the antibody (model) genome. These signals contain information interpretable by the grammar to maintain model context. Grammatical Immune System Evolution (GISE) is applied to a nonlinear system identification problem in which a generalized (nonlinear) dynamic Bayesian model is evolved to fi t biologically motivated artificial time-series data. From experimental data, we use GISE to infer an improved kinetic model for the oxidative metabolism of 17β-estradiol (E2), the parent hormone of the estrogen metabolism pathway.


Post a Comment

x close

Discussion Add A Comment
No comments yet...Be the first to comment.


share on

Our Service Promise

  • Prompt Processing (Average 3 Weeks)
  • Fair & Constructive Peer Review
  • Professional Author Service
  • High Visibility
  • High Readership
  • What Our Authors Say

Quick Links

Follow Us We make it easy to find new research papers. RSS Feeds Email Alerts Twitter

BROWSE CATEGORIES
Our Testimonials
I had an excellent experience publishing our review article in Clinical Medicine Reviews.  The managing editor was very helpful and the process was very timely and transparent.
Professor Jonathan A. Bernstein (University of Cincinnati College of Medicine, Division of Immunology, Allergy Section, Cincinnati, OH, USA) What our authors say