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Abstract: An artifi cial immune system algorithm is introduced in which nonlinear dynamic models are evolved to fi t time 
series of interacting biomolecules. This grammar-based machine learning method learns the structure and parameters of 
the underlying dynamic model. In silico immunogenetic mechanisms for the generation of model-structure diversity are 
implemented with the aid of a grammar, which also enforces semantic constraints of the evolved models. The grammar acts 
as a DNA repair polymerase that can identify recombination and hypermutation signals in the antibody (model) genome. 
These signals contain information interpretable by the grammar to maintain model context. Grammatical Immune System 
Evolution (GISE) is applied to a nonlinear system identifi cation problem in which a generalized (nonlinear) dynamic Bayesian 
model is evolved to fi t biologically motivated artifi cial time-series data. From experimental data, we use GISE to infer an 
improved kinetic model for the oxidative metabolism of 17β-estradiol (E2), the parent hormone of the estrogen metabolism 
pathway.

Keywords: artifi cial immune system, somatic hypermutation, V(D)J recombination, unscented kalman fi lter, dynamic 
bayesian network, estrogen metabolism, nonlinear dynamic bayesian model

1. Introduction
The goal of systems biology is to understand the network of interacting genes, proteins, and biochemical 
reactions that regulate systemic properties of an organism. A realistic biological network, rather than a 
static graph, should contain nodes that produce time-varying input/output and edges that represent fl ux 
through the system [1]. For many biological pathways there is a lack of accurate mathematical models 
capable of capturing causal dependencies and mechanistic information contained in kinetic data. Thus, 
one of the goals of computational biology is to develop data-driven algorithms to automate the 
identifi cation of mathematical model structure from time series. Dynamic Bayesian networks (DBNs) 
have been used to identify linear relationships between variables in gene networks from time series 
[2, 3, 4]. However, in addition to time-dependence, a realistic biological network should capture nonlinear 
relationships. We use a fl exible differential equation formalism that allows us to treat time-dependent 
nonlinearities in the form of a nonlinear dynamic Bayesian model (NDBM).

Specifi cally, we use a Kalman Filter (KF) to optimize model parameters and determine the accuracy 
of models that track time series. The KF is a tracking and estimating tool widely used in engineering 
and has been applied to the inference of NDBMs from biological time series [7]. The KF is a Bayesian 
method in the sense that it provides a mechanism to incorporate prior information from a previous time 
point to update the state of the system at the current time point. For linear models, the KF reduces to a 
DBN; however, the KF becomes the more general NDBM when a nonlinear model is specifi ed. Although 
the KF provides an effi cient, recursive method for identifying the parameters of a NDBM, the enormity 
of the search space of possible nonlinear model structures calls for heuristic search methods, such as 
evolutionary algorithms [5, 6, 7], to identify the underlying structure. An important challenge in time-
series bioinformatics addressed in this work is the automated, data-driven identifi cation of mathematical 
model structures.

Previously we implemented a hybrid grammatical evolution (GE) approach to infer nonlinear model 
structures and parameters from time series [7]. The advantage of GE lies in the simplicity of translating 
variable-length binary string genomes into programs using a context-free grammar [8]. However, 
the advantage of the context-free grammar can lead to problems during crossover and mutation because 
model segments downstream of a mutation or crossover-point that possessed an evolutionary advantage 
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in the parent chromosome may have a completely 
different meaning in the context of the offspring. 
Thus, there are theoretical reasons that crossover 
and mutation can be destructive operators in 
GE [9]. Novel crossover methods, such as homol-
ogous crossover [10] and tree-based crossover [11], 
which attempt to preserve model building blocks, 
typically show no improvement over standard GE 
crossover techniques. In the application domain of 
human genetics, it has been shown that the perfor-
mance of GE was not statistically different from a 
random search [12].

In Sections 1–4 we introduce a new grammar-
based, artifi cial immune system algorithm called 
Grammatical Immune System Evolution (GISE). 
To overcome the destructive nature of evolutionary 
operators in other grammar-based evolutionary 
algorithms, we introduce a hypermutation operator 
that preserves evolutionarily fi t model features. 
As we discuss in more detail in Sec. 2, we focus 
on hypermutation because of its important bio-
logical role in secreting high-affi nity antibodies 
with increased antiviral function. GISE takes 
advantage of a grammar’s ability to restrict the 
search space based on domain knowledge, while 
at the same time limiting the damage caused by 
evolutionary operators. As discussed in Secs. 3 and 4, 
when generating programs, the grammar inserts 
nonterminal information into an untranscribed 
pre-program, and this information is excised after 
transcription and subsequent expression of the 
antibody (i.e. the dynamic model). Rather than 
acting on GE binary strings or directly on GP pro-
grams, GISE evolutionary operators act on these 
intermediate pre-programs. Mutation is initiated 
by a break in the untranscribed pre-program. The 
grammar then acts as an error-prone DNA repair 
mechanism using the nonterminal information 
previously inserted by the grammar as a repair 
signal. These nonterminal repair signals enforce 
semantic constraints imposed by the grammar, 
thereby preserving evolutionarily fit model 
segments.

We use GISE to automatically reverse engineer 
NDBMs to fi t time-series data simulated to include 
nonlinearity and interactions (Secs. 5.1 and 5.2). 
We demonstrate that GISE, unlike GE, greatly 
outperforms a Monte Carlo search for realistic 
nonlinear simulated models. In Sec. 5.3 we apply 
GISE to experimental time-series data for the 
oxidative metabolism of 17β-estradiol (E2). We 
infer an improved model of the kinetics of this 

pathway that has been implicated in breast cancer. 
In this application of the immune system heuristic, 
the time series represents the antigen, the 
candidate models represent antibodies, and the 
goodness of fi t as determined by the KF is analo-
gous to the binding affi nity.

2. Artifi cial Immune Systems
Despite having an estimated genome of fewer than 
25,000 protein-encoding genes, the human adaptive 
immune system is able to recognize tens of millions 
of antigens. This seemingly limitless ability to 
generate diveristy has inspired the development of 
evolutionary algorithms that mimick features of 
the adaptive immune sytem. These algorithms are 
known as artifi cial immune systems [13], and they 
typically utilize high-level features of the immune 
system such as clonal selection, negative selection, 
and immunological memory. With the aid of a 
grammar, we attempt to simulate the molecular-
level immunogenetic mechanisms that generate 
diversity in antigen receptors, such as immuno-
globulin in B cells and the T cell receptor (TCR) 
in T cells.

The ability to create such a diverse array of 
antigen-specifi c antibodies from a fi nite set of 
genes from the germline is accomplished primarily 
through a genetic reshuffl ing process known as 
V(D)J recombination and a diversifi cation process 
known as immunoglobulin hypermutation (IHM). 
However, there is experimental evidence to suggest 
that somatic mutation is the key to creating high-
affi nity antibodies. It is well known that virus-
induced antibodies in infants exhibit poor functional 
activity compared to that of adults. For example in 
rotavirus it was shown that, although infant anti-
body gene sequences use the same immunodomi-
nant gene segments as adults to respond to the 
virus, there was a marked lack of somatic mutations 
in the infant antibody sequences [14]. Recently we 
found that human adult antibodies specifi c to rota-
virus bind in a region enhanced by somatic muta-
tions and these mutations account for the enhanced 
affi nity of the adult antibodies [15, 16]. Thus, the 
grammar-based immune system algorithm 
described in this work focuses on creating a com-
putational model of the immunogenetic mechanism 
of hypermutation for generating dynamic model 
diversity because of the important biological role 
of IHM in the secretion of high-affi nity antibodies 
with increased antiviral function.
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3. Grammatical Immunoglobulin 
Hypermutation
The mechanism of IHM is not completely 
understood. IHM has been linked to transcription 
and requires the presence of immunoglobulin 
enhancers [17]. In addition to random nuculeotide 
substitutions, certain hotspot motifs have an 
increased susceptibility to mutation [18]. Muta-
tions are introduced into the antibody genes by an 
error-prone polymerase during the repair of double 
stranded breaks (DSBs). The resulting antibody 
generally preserves the antibody architecture estab-
lished by V(D)J recombination. It has been shown 
that hypermutation can occur in any antibody 
sequence provided there is an active promoter and 
immunoglobulin enhancer. Promoters and enhanc-
ers are types of regulatory regions that help control 
the transcription of genes. Enhancer DNA 
sequences bind transcription factors called 
enhancer-binding proteins that increase the rate of 
transcription. In the grammar-based hypermutation 
operator used by GISE, the grammar plays the role 
of the DSB repair mechanism and nonterminal tags 
are used as promoters and enhancers.

The steps of Grammatical Hypermutation 
(GHM) employed by GISE are illustrated in Figure 1, 

in which an initial program  x2 + xy leads to the 
fi nal mutated program x2 + y2. A grammar is a set 
of production rules that can produce sentences in 
any language. Sentences created by our grammar 
are systems of coupled nonlinear differential equa-
tions. We use a formal notation for describing the 
syntax of a context-free grammar as a set of pro-
duction rules that consist of terminals (model ele-
ments) and nonterminals (the production rules 
themselves) [7, 8, 19]. For simplicity, only (var) 
nonterminals are used in the Figure 1 illustration. 
In order to preserve the model architecture, the 
grammar creates an “untranscribed" model with 
explicit nonterminal elements (Step a). In the 
untranscribed program, terminals are enclosed by 
nonterminal tags (e.g. 〈var〉 ⋅ 〈/var〉). These nonter-
minal tags are similar to enhancers that will be 
spliced out after transcription. In Step b, a DSB 
occurs at a random location (hatched region), 
which specifi es the nonterminal of the model that 
will be mutated. Error-prone repair is initiated in 
Step c. It is determined from the grammar that there 
are three possible terminals for the (var) enhancer, 
which are {x, y, z}, and from these terminals y is 
chosen by chance to replace x. The replacement is 
carried out in Step d. The grammar tags of the 
mutated model are spliced out in Step e, and the 
expressed antibody (mathematical model) is intro-
duced to the antigen (i.e. the program fi tness is 
evaluated on the data).

The nonterminal tags in the untranscribed 
program allow the grammar to interpret informa-
tion from the enhancer and maintain context 
within the model. This helps GHM prevent the 
destruction of good model elements downstream 
of the DSB. This is especially important during 
model refi nement. For example, let us assume the 
target model in Figure 1 is, indeed, x2 + y2. 
Whereas GHM in GISE will not modify the y 
terminal from the original model downstream of 
the targeted mutation x (Fig. 1b), there is a fi nite 
probability that GE would mutate the final 
terminal in addition to the terminal targeted for 
mutation. The context-free nature of the grammar 
causes downstream GE program elements to be 
sensitive to small changes in the mutated element; 
small changes that may lead GE down a very 
different grammar path. In addition, the degree 
of context-free sensitivity will depend on the 
complexity of the grammar. Through the enhancer 
tags (e.g. 〈var〉 ⋅ 〈/var〉), GISE essentially adds 
context to the context-free grammar by forcing 

a. Transcription begins (x2+ xy ):

var x /var var x /var + var x / var var y / var

b. Double stranded break:

var x /var var x /var  + var x / var var y / var

c. Error prone DNA polymerase (grammar):

var x / var var ::= { x,y,z }

var y / var

d. Repaired transcript:

var x / var var x / var  +  var y / var var y / var

e. Splicing:

x2 + y2

1. grammar

3. x → y

2. choose random terminal( e.g. ,y)

 

Figure 1. Illustration of grammatical hypermutation (GHM) used in 
grammatical immune system evolution (GISE). GHM is applied to an 
untranscribed program corresponding to x2 + xy (a). A double stranded 
break occurs (b. hatched), and the error-proned grammar repairs the 
program (c). The terminal x is replaced by y (d), and the fi nal spliced 
program becomes x2 + y2 (e).
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affi nity for the data die by apoptosis and are 
removed from the population. Then in line 7, 
hypermutated models are generated from the 
highest affi nity models to repopulate the set of 
models. Thus, in line 8, the population is fi lled 
with the best models (the highest affi nity models 
and their hypermutated models), which become 
the basis for the next cycle of selection and 
hypermutation beginning at line 3. After N cycles 
have been completed, the best models are 
inspected.

The GISE steps in Figure 2 are primarily 
concerned with learning the structure of the 
NDBM. Crucial to the success of the algorithm, 
however, is the estimation of model parameters 
and the calculation of goodness-of-fit (affinity, 
Aff(m,D)) of the model m for the data D, which 
we carry out using the Unscented Kalman Filter 
(UKF). We use a discrete nonlinear determinis-
tic state space model for the state at observed 
time point tk + 1 in terms of its predecessor at 
time tk:

  (1)

and

 
 

(2)

models to respect the constraints of the model 
prior to the action of the GHM operator.

4. Generalized Dynamic Bayesian 
Network
Hypermutation in Figure 1 is the major operator 
of the full GISE algorithm, illustrated as pseudo-
code in Figure 2. GISE evolves a population of 
NDBM models of  population size |M| for N 
cycles of hypermutation and selection. The 
population of models at cycle i is given by M(i), 
where each model in the GISE analogy represents 
an antibody encoded by a plasma B cell. For cycle 
0 (line 2) an initial population of models M(0) is 
generated at random from the user-specified 
grammar Γ. These models represent the germline 
set of antibodies that will be somatically hyper-
mutated for cycles 1… N (line 3). The user 
specifi es the fraction α of models that are hyper-
mutated at each cycle i with the help of the gram-
mar Γ. During a cycle, the binding affinity 
(Aff(m,D), line 5) is calculated for all models m 
with respect to the data D. The time-series D acts 
as the antigen in Aff(m,D), and the ability of the 
model (antibody) to fi t (bind to) the data (the 
antigen) is computed using the KF discussed 
below. In line 6, the models with the lowest 

1  Input/Definitions:

D = time-series data (antigen)
M(i) = set of models (antibodies) at cycle i
|M | = population size (i.e. number of models (antibodies) per cycle)
N = number of cycles (generations)
α = fraction of best models mutated during each cycle
Γ = grammar for constructing nonlinear dynamic models
GHM = Grammatical Hypermutation operator (see Fig. 1)
Aff(m,D) = binding affnity (fitness) of model m for data D

2  Initialize population of models (antibodies):

Create a random set of models M(0) based on Γ

3  for cycles i = 1... N   

4           for all models in cycle i-1(i.e. m    M(i-1))

5    Calculate the affinity Aff(m,D) using Unscented Kalman Filter

6           Remove (apoptose) lowest |M| (1-α) affinity models

7           Apply GHM with Γ to highest |M| α affinity models 

8           Place top |M| models in M(i) for next cycle   

1− α
α times

Figure 2. Pseudocode for Grammatical Immune System Evolutionary algorithm applied to the learning of nonlinear dynamic Bayesian 
models from time series.

yk k k k+ = +1 F y( , ) ,λ η

F y f y( , ) ( ( ), ) ,y T dTk k k t

t

k

kλ λ= + +∫ 1
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where f satisfi es the coupled set of differential 
equations

 �y t t( ) ( ( ), ),= f y λ  (3)

and �y represents the derivative of a molecular 
quantity with respect to time. The measurement 
noise is represented by ηk and enters into our 
calculations implicitly through the covariance 
matrix R Ek k k

T= [ ],η η  which becomes part of 
the covariance matrix P� �yy  calculation below. The 
operator E[⋅] is the expectation value. The 
elements of the vector λ of dimension Dλ are 
the parameters of the model f. Since the model 
parameters are unknown, we treat the elements 
of λ as state variables to be tracked with process 
noise �:

 λ λk k k+ = +1 � .  (4)

The process noise in the stochastically varying 
parameter vector is represented by �, but this 
noise vector enters into our calculations only 
indirectly through the covariance matrix 
Q Ek k k

T= [ ].� �  Equations (1,2,3,4) can be viewed 
as a representation of a nonlinear dynamic 
Bayesian model (NDBM). These equations 
reduce to a DBN when the vector of nonlinear 
functions f is replaced by a linear transformation 
of y with a matrix A (i.e. Ay + �). Next we 
describe an optimal, recursive method—the 
UKF—to estimate the NDBM parameters λ and 
the model fi tness Aff(m,D).

The diagram in Figure 3 illustrates the Bayesian 
estimate of the states of a given model. It is con-
venient to create an augmented state x of the system 
in which the dependent variables y are augmented 
by the parameter vector λ:

 

xk
k

k
y

= ⎛
⎝⎜

⎞
⎠⎟

λ
.  (5)

Empty circles in the figure represent a priori 
estimates of the states prior to observation of the 
experimental data z at the given time point. 
Variables with a tilde indicate a priori estimates 
and with a hat indicate a posteriori estimates. The 
a priori estimate of the unaugmented variables 
(e.g. corresponding to observed molecular 
quantities) at time t t t+ +Δ Δ, ,�yt

 is given by the 
posterior estimate at the previous time point t, ˆ ,yt  

integrated out to t + Δt. We use a fourth-order 
runge-kutta solver to integrate the model Equation 3. 
In the a posteriori estimate of the augmented state  
x̂t t+ Δ  (Eq. 5), we use the Kalman gain matrix K 
to blend the difference between the experimental 
data zt and the predicted prior estimate �yt t+ Δ .  In 
order to make the dimensions agree between the 
augmented and unaugmented vectors (Fig. 3 and 
Eq. 6), the Kalman matrix includes a con-
stant contribution Q in the covariance matrix 
P x x y yxy� � � �= − −E T[( )( ) ])  corresponding to the 
parameters λ in the augmented state. This constant 
covariance contribution mimics the uncertainty of 
the variables being tracked. The larger the assumed 
value of Q, the more relaxed the search for the 
optimal parameters. The recursive engine of the 
Kalman fi lter involves correcting the predicted 
moments at time point k + 1 with the observed data 
using equations

 ˆ ( )| | |x x K z yk k k k k k k k+ + + + += + −1 1 1 1 1� �  (6)

and

 K P Pk xy yy+
−=1

1
�� � � .  (7)

For convenience of notation, we use k as the time 
index, so that if the system is at time t, then the cur-
rent state is xk and the state at time t + Δt is xk + 1. The 
a posteriori estimate of the augmented state at time 
step k + 1, given by Equation (6), consists of the a 
priori prediction �xk k+1|  at the previous time step and 
a correction term proportional to the difference 
between the observed data zk and the estimate of the 
unaugmented state �yk k+1|  at the previous step. In 
Equation (7), P��xy is the covariance matrix for the 
deviation of the x and y states from their a priori 
estimates. The Kalman gain or blend matrix K, 
updated by Equation (7), is chosen to minimize the 
trace of the a posteriori error covariance matrix Pˆ ˆxx  
because the trace of this covariance matrix equals the 
sum of the squared errors of the components of the 
posterior estimate of x ( ).i.e. �x

k k+ +1 1⏐
We use the unscented transformation (UT) 

[20] to effi ciently and accurately estimate the 
fi rst two moments of the state distribution under-
going transformations during the prediction of 
the future state of the system and during the 
correction of the state with the observation 
model. The UT estimate of the posterior mean 
and covariance is accurate to third order for any 
nonlinearity, and the UKF is much faster than 
Monte Carlo Markov chain particle filters. 
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Further details on the unscented transformation 
for the deterministic calculation of the statistics 
of a random variable undergoing a nonlinear 
transformation and the application to Kalman 
fi ltering for state space modeling can be found 
in Refs. [7, 20, 21].

5. Theoretical and Experimental 
Validation of GISE
Testing novel system identification algorithms 
on real biological data is challenging because 
the true causal connections underlying the 
system often are unknown. Thus, before applying 
GISE to real experimental data, we apply it to 
simulated data from two biological pathway 
targets for method validation. We simulate 
50 time points for each varying quantity y, and 
we assume Q  = 0.015 process noise for estima-
tion of parameters λ. When the UKF algorithm 
is called by GISE, all model parameters are 
initialized to 0.001. This corresponds to an 
uncoupled system of differential equations, 
which is the least biased initialization of the 
model parameters. An iterative process of 
parameter optimization is implemented to 
achieve precise model parameters [7]. The vector 

of parameter estimates at the final time point are 
compared with the parameters from the previous 
iteration, which are used as the input for the next 
iteration. The UKF process is continued until 
convergence of the parameters to within a toler-
ance of 0.0001 is achieved or a maximum loop 
count of 200 is reached.

To avoid over-fi tting, we use the Akaike Infor-
mation Criterion (AIC) [22] for distinguishing 
between models f(y(t), λ, �(t)). Thus, the model 
fi tness (affi nity) is given by:

 Aff f f y y D( ) ln[( ( , , ) | )] ,= − +2 2λ λ�  (8)

where ln[L] is the maximum log-likelihood and 
Dλ is the complexity of the model, or the number 
of parameters λ in f. AIC avoids over-fi tting by 
balancing the bias of the model predictions with 
the complexity of the model structure. Once a full 
population of models has been evaluated, GISE 
copies the top 20% (the quantity α in Fig. 2) of 
the most fi t models to the next cycle . For each 
of these models, four hypermutated copies are 
created to fill the remainder of the cycle's 
population by GHM, carried out as described in 
Figure 1.

TIME

STATE

t + tt t + 2 t

Prediction

Correction

a priori estimate

a posteriori  estimate

Prediction

Correction

  +

 + +=

tt

t
ttt dttyƒyy ),(ˆ

)~~

~

(ˆ ttttttttt yzKxx  + + + + +=

• ••

Figure 3. Bayesian concept of the Kalman Filter. Empty circles represent a priori state estimates at a given time point before the experimental 
data is observed and fi lled circles represent a posteriori state estimates that incorporate the experimental data at the given time point. The 
recursive Kalman Filter steadily improves the estimate of the augmented state, which includes the parameters, as it steps through the 
observed time points.
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5.1. Application to operon simulations
The first multiline, nonlinear dynamic target 
pathway is based on the following operon model:

 

�

�

�

y
y

y

y y y
y y y

1
1

1 3
1 1

2 2 1 2 2

3 3 2 3 3

=
+

−

= −
= −

κ
γ

κ γ

κ γ

θ
,

,

,

 (9)

where k = (0.9, 1.0, 0.6), γ = (1.0, 0.6, 0:8), and 
θ1 = 0.9 with initial conditions y(0) = (1.0, 0.6, 0.0). 
First introduced in Ref. [23] and then extended in 
Ref. [24], the operon model continues to be a useful 
framework for modeling biological systems 
[25, 26]. Equation (9) represents a model of an 
hypothetical single-gene regulatory network involv-
ing a negative feedback loop with measured gene 
products y. A single gene with mRNA concentration 
y1 produces an enzyme with concentration y2. 
Enzyme y2 catalyzes a reaction step leading to 
metabolite y3, which inhibits the gene that codes 
for the enzyme. Parameters k and γ  are production 
and degradation constants, respectively, and θ 
modulates the inhibitory Hill function.

The following is the type of grammar used by 
GISE to evolve a gene regulatory network based 
on an operon model.

construction, 〈random-int〉 assigns a random index 
to the dependent variable from the possible number 
of dependent variables. The number of parameters 
is tracked during model construction so that 
when a 〈param〉 nonterminal is encountered, 
〈incremented-int〉 assigns the next index to the 
parameter array p.

Figure 4 shows the cumulative percent of runs 
(out of 100) that identify the simulated target 
model of Equation (9) for GISE compared with 
Monte Carlo search (MCS). Each bar gives the 
percentage of runs that have identifi ed the correct 
model at the given cycle. This is an important 
evaluation of GISE because GE was previously 
shown to perform no better than a random search 
for supervised learning in the application domain 
of human genetics [12]. To make the comparison 
fair, our MCS constructs models from the same 
grammar used by GISE. Both algorithms perform 
the same number of function evaluations (popula-
tion size = 50), only MCS does not use GHM. 
Each GISE run takes 4–5 hours to run on a single 
3.2 GHz Intel Xeon processor. For all cycles, 
GISE has a much higher percentage of hits, and 
by cycle 10, 73% of the GISE runs have hit the 
target model versus 23% for MCS. This demon-
strates the GHM operator in GISE promotes 
learning by preserving useful model components. 

Models are constructed from the grammar 
beginning with the 〈model-expr〉 nonterminal and 
subsequent nonterminals are replaced by the 
grammar rules recursively until the model contains 
only terminals. Multiple choices for a rule are 
delimited by a vertical bar. Subtraction operators 
are not needed because the UKF is able to deter-
mine the sign of the model parameters. To manually 
add parsimony pressure, we add an extra 〈linear〉 
to the 〈function〉 choices. When the grammar 
encounters a 〈variable〉 nonterminal during model 

We stopped GISE and MCS at a number of cycles 
suffi cient to demonstrate that GISE performs 
better than MCS for the given model search space. 
If a large enough number of random models are 
generated, even MCS will identify the target 
model, but this type of brute force approach is not 
practical for higher-dimensional data where more 
appreciable learning is needed. In practice, the 
GISE population size and number of cycles 
should be tuned to account for the size of the 
search space, or the number of molecular 

 〈model-expr〉 ::= 〈function〉 + 〈function〉

 〈function〉 ::= 〈linear〉 (0)
 ⏐ 〈linear〉 (1)
 ⏐ 〈regulatory〉 (2)
 〈linear〉 ::= (〈param〉 * 〈variable〉)

 〈regulatory〉 ::= (〈param〉/(〈param〉 + 〈variable〉))
 〈variable〉 ::= y[〈random-int〉]
 〈param〉 ::= p[〈incremented-int〉]
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quantities being modeled and for the computational 
resources available.

5.2. Application to S-system simulations
The second, more complex, target model is based 
on the S-system (synergistic) formalism:

 

�

�

�

�

y y y y

y y y

y y y y

y y y

1 3 5 1
2

2 1
2

2
2

3 2 3
2

2

4 3
2

5 10

10 10

10 10

8

= −

= −

= −

=

,

,

,

55 4
2

5 3
2

5
2

10

10 10

−

= −

y

y y y

,

,�

 
(10)

where the initial conditions are y(0) = (0.7, 0.12, 
0.14, 0.16, 0.18). This S-system gene network of 
fi ve differential equations has been used to test 
various system identifi cation algorithms [5, 27, 28]. 
In this two-gene network, y1 is the mRNA produced 
from gene 1, y2 is the enzyme encoded by gene 1, 
and y3 is an inducer protein catalyzed by y2. The 
quantity y4 is the mRNA produced from gene 2 and 
y5 is a regulator protein encoded by gene 2. Positive 
feedback from y3 and negative feedback from y5 
are assumed in the production of mRNAs from the 
two genes.

The S-system gene network model of Equation 10 
is a more realistic test of GISE because of the larger 

number of variables and because we are using a 
grammar with opeon-model components instead 
of biasing the grammar with S-system components 
used to simulate the gene network based on 
Equation 10. We use the same operon grammar 
used in Sec. 5.1 with the exception that we add 
another rule to the (model-expr) nonterminal in 
order to more reliably fi t this larger system:

〈model-expr〉 ::= 〈function〉 + 〈function〉 (0)

 ⏐〈function〉 + 〈function〉 + 

 〈function〉 (1)

From Figures 5a–e, we see that GISE is able to 
fi t the S-system simulated data using an operon 
grammar with reasonable accuracy. A GISE run on 
this larger data set to fi nd the optimum model 
structure and parameters takes 7–8 hours to run on 
a single 3.2 GHz Intel Xeon processor. Each 
subfigure shows a different y profile for the 
top 3 GISE model predictions. Even though model 
2 has a better goodness of fi t, one can see from 
Figures 5a-e that model 1 fi ts the data better, pos-
sibly over fi tting. Model 2 has a higher fi tness 
because it has one fewer parameter than the other 
two models and hence is more parsimonious. 
Model 3, with the worst goodness-of-fi t of the three 
top models, may actually be the most desirable 
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Figure 4. Comparison of Grammatical Immune System Evolution (GISE) and Monte Carlo search to assess whether somatic hypermutation 
contributes to learning. Monte Carlo is equivalent to GISE without somatic hypermutation, and both execute the same number of function 
evaluations. Population size is 50. Cumulative percent of runs (out of 100) that identify the correct simulated target (Eq. 9). By cycle 10, 73% 
of the GISE runs have hit the target versus 23% for Monte Carlo.
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Figure 5. Comparison of top 3 Grammatical Immune System Evolution (GISE) candidate models for the target coupled system simulated 
by Equation 10 (dashed). GISE population size is 50 and number of cycles is 20. Each subfi gure plots the predictions for each y profi le and 
the corresponding target profi le. (a) Model 3 fi ts y1 best and has no false positive or false negative connections (see Table 1 and Eq. 10). 
Model 1 is the next best fi t, but it has one false positive connection for dy1/dt. (b) Model 1 fi ts y2 best. However, it has one false positive 
connection for dy2/dt, while model 3 has no false positive or negative connections. (c) Predictions for y3 all very similar for all models. (d) 
Predictions by models 1 and 3 are very similar and both have no false positive or negative connections. (e) Model 1 fi ts y5 slightly better 
than model 3, but model 1 has one false positive connection.
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by simultaneously stimulating cell proliferation 
and gene expression via the estrogen receptor 
and by causing DNA damage via their oxidative 
products, the 2-OH and 4-OH catechol estrogens 
[29, 30]. To better understand estrogen metabo-
lism in the breast, the authors in Ref. [31] 
employed gas and liquid chromatography with 
mass spectrometry to measure E2, the catechol 
estrogens 2-hydroxyestradiol (2-OHE2) and 4-
hydroxyestradiol (4-OHE2) as well as methoxyes-
trogens and estrogenglutathione conjugates. 
Using this data, a mathematical model was con-
structed in Ref. [32] using quasi steady-state 
assumptions and experimental rate constants. To 
test the computational method described in the 
current paper, we employed GISE to learn a 
nonlinear model structure and model parameters 
directly from the phase-I estrogen time series. 
The resulting GISE model (Eq. 11) showed an 
improved fit to the data (Fig. 7) over the 
previously constructed model in Ref. [32]. 
Regarding causal connections, there was no 
signifi cant change in the connectivity among the 
top models inferred by GISE, suggesting that 
these connections likely are true positives.
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model because its causal connections all agree with 
the simulated model (compare the connections in 
Model 3 in Table 1 with Eq. 10). In model 1 by 
contrast, dy2/dt has a false positive connection, 
dy3/dt has a false negative connection, and dy5/dt 
has a false positive connection. We defi ne a false 
positive connection as a model term that predicts 
a spurious connection between variables, and a 
false negative connection as a true connection 
between variables that was not predicted by the 
model. In Figure 6, we corrupt data simulated by 
the model given by Equation 10 with 10% Gaussian 
observation noise and show that the GISE and the 
UKF can handle the type of noise that often arises 
in biological data.

5.3. Estrogen metabolism pathway
We now apply GISE to experimental estrogen 
metabolism time series. Estrogens have been 
implicated in the development of breast cancer 

Table 1. Analytical form of the top 3 GISE models 
predicted for the target coupled system simulated by 
Equation 10. Model predictions are given in Figure 5. 
GISE models are listed in order of goodness of fi t. The 
models were constrained by the grammar to use an 
operon formalism. True positive and false positive con-
nections in these models can be determined by com-
parison with Equation 10.

GISE Model 1
dy1/dt = p1y3/(p2 + y3) + p3y1 + p4y5

dy2/dt = p5y2 + p6y1 + p7y4

dy3/dt = p8y3/(p9 + y3) + p10y3

dy4/dt = p11y3 + p12y5 + p13y4

dy5/dt = p14y5 + p15y3 + p16y1/(p17 + y1)

GISE Model 2
dy1/dt = p1y3/(p2 + y3) + p3y1 + p4y5

dy2/dt = p5y2 + p6y1 + p7y4

dy3/dt = p8y3/(p9 + y3) + p10y3

dy4/dt = p11y3 + p12y5 + p13y4

dy5/dt = p14y5 + p15y2

GISE Model 3
dy1/dt = p1y3/(p2 + y3) + p3y1 + p4y5

dy2/dt = p5y2 + p6y1

dy3/dt = p7y2/(p8 + y2) + p9y3

dy4/dt = p10y3 + p11y5 + p12y4

dy5/dt = p13y5 + p14y3 + p15y3/(p16 + y3)
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Figure 6. Demonstration of Grammatical Immune System Evolution (GISE) in the presence of noise. GISE models (solid) for the target 
coupled system simulated by Equation 10 (dashed) corrupted by 10% Gaussian noise.
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estrogen metabolites (blue x’s). Concentrations measured in μM/L. GISE model compared with mathematical model derived in Ref. [32] 
(green dashed).

6. Discussion
In this study we introduced Grammatical Immune 
System Evolution (GISE) and applied it to the 
evolution of nonlinear dynamic Bayesian models 
(NDBMs) to automatically reverse engineer 
models from biologically motivated time-series 
simulations and from real experimental data from 
the estrogen metabolism pathway. Grammars 
allow one to incorporate domain-specifi c knowl-
edge and thereby reduce the search space. Gram-
matical Evolution (GE) has these advantages, but 
in a particular real-world application GE’s perfor-
mance showed no statistically signifi cant differ-
ence between the performance of a simple Monte 
Carlo search, which is likely due to the destructive 
nature of mutation and crossover in GE. Motivated 

by this, we used the GISE formalism to create a 
non-destructive somatic mutation operator. This 
somatic hypermutation operator is based on the 
diversity-generating mechanism used in the human 
adaptive immune system. The purpose of this 
operator was to traverse the model search space 
efficiently while preserving evolutionarily fit 
model features.

We showed that GISE can routinely infer the 
correct NDBM from time series for three interact-
ing variables by cycle 10 with a modest popula-
tion size of only 50, and that GISE performs 
signifi cantly better than a Monte Carlo search 
with the same population size and number 
of cycles (Sec. 5.1), thus demonstrating that GISE 
promotes learning by preserving useful model 
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components. Our previous hybrid GE approach 
in Ref. [7] required much larger evolutionary 
population parameters to routinely identify a cor-
rect model. We found that GISE scaled well when 
applied to a more complex simulated data 
set (Sec. 5.2, Fig. 5). Despite being forced to fi t 
data simulated from another formalism (S-system), 
the inferred operon models were still able to fi t 
the the nonlinearities while also possessing the 
interpretability of S-system models. Beyond 
accurately tracking the time-series profi les, it is 
important to identify the correct causal connec-
tions between the time varying biomarkers. One 
of the top 3 GISE models predicted all of the 
connections in the simulated S-system model. It 
is quite possible the S-system formalism would 
also result in false positive and negative connec-
tions if used to fi t data simulated from another 
formalism or from real data. Thus, an important 
caveat to time-series modeling is that one should 
use feedback with experiment whenever possible 
to eliminate false positive and negative model 
elements from the top models; one cannot simply 
rely on the model with the highest fi tness. Note 
that this caveat applies to all dynamic-model 
reverse engineering algorithms, and not just 
GISE. Figure 6 shows that GISE is able to fi t the 
larger S-system simulations even when corrupted 
by significant measurement noise due to the 
ability of the UKF to incorporate noise into 
the modeling process. In order to accelerate the 
search for correct models, we seeded the grammar 
with domain-specifi c knowledge in the form of 
regulatory elements that capture the intrinsic 
nonlinearity of biological time series data. In 
future studies, we will test the use of more 
general, recursive grammars.

All mathematical models are an approximation, 
but the gold standard test of whether the best 
model has been identifi ed is through prediction 
and feedback with a validation experiment. In Sec. 
5.3 GISE discovered a model (Eq. 11) that tracks 
a set of estrogen metabolism time series with high 
accuracy (Fig. 7). Comparison with a previous 
mathematical model [32] showed that GISE can 
automatically identify improved models from real 
data. From Figure 7 the most marked improve-
ments were for MeOHE -MeOHE2

23
2( )2  for which 

the previous model approaches the wrong stead-
state limit, and MeOHE - MeOHE2

23
2(2 �� - 3-  for 

which the previous model does not fi t the peak 
feature of the time series profi le. The GISE model 

Equation 11 should be viewed as a starting point 
for model development and we anticipate that 
feedback with experiment will refi ne and extend 
the model inferred in this work. The mathematical 
model in Ref. [32] modeled three additional quan-
tities whose data were not available for this study. 
However, in a future study we plan to incorporate 
this additional data and generate new predictions 
for feedback with experiment. Biological time 
series contain considerably more causal informa-
tion than gene expression or protein abundance at 
a single time point, and bioinformatics tools such 
as GISE are needed to infer predictive models 
from these data. An accurate dynamic model can 
reveal insight into biological relationships and 
may act as an in silico experimental tool to gener-
ate testable hypotheses. Among these experiments 
will be to test the effect of intrinsic noise and small 
perturbations on the system. Thus, an important 
feature of GISE is the use of a Kalman Filter which 
accounts for noise when estimating system 
parameters.

As the mechanism for generating model diver-
sity in GISE, we focused on grammatical somatic 
hyper-mutation, which is ideally suited for refi ning 
programs in the same way the biological immune 
system uses hypermutation to create high-affi nity 
antibodies. V(D)J recombination is another immu-
nogenetic mechanism for creating antibodies that 
exhibits a high degree of amino acid diversity. Our 
application needed only a small population size 
and number of cycles, but for higher-dimensional 
networks, GISE may benefi t from the diversity-
generating ability of V(D)J recombination. V(D)J 
recombination can be implemented in the same 
manner as IHM. The V(D)J process works by a 
recombinase that recognizes recombination signal 
sequences (RSSs) in the DNA sequence, which 
fl ank the coding elements. During model creation, 
the grammar would insert into the untranscribed 
program RSSs that contain semantic constraints, 
then during V(D)J recombination the grammar 
would act as the recombinase to join coding ends 
together in such a way that the function of the 
model is preserved.
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Table S1. The parameters of the three models in 
Table 1. The indices of the parameter array p[ ] are 
given in the fi rst column. All parameters converged to 
the iteration tolerance of 0.0001. 

Parameter 
index

Model 1 Model 2 Model 3

1 34.636 50.905 35.291
2 0.010 0.010 0.010
3 −26.569 −41.936 −27.157
4 −15.797 −20.448 −15.970
5 −24.326 −5.687 −11.064
6 6.293 12.752 11.233
7 14.735 −5.539 105.480
8 100.323 116.132 0.010
9 0.010 0.010 −105.999
10 −100.741 −116.943 48.489
11 44.006 53.480 −17.228
12 −16.797 −12.813 −34.849
13 −30.255 −44.416 −13.966
14 −15.294 −41.280 24.941
15 32.353 54.247 −10.743
16 −16.740 – 0.010
17 0.010 – –

Table S2. The parameters of Equation 11 model of the 
estrogen metabolism time-series data. The indices of 
the parameter array p[ ] are given in the fi rst column. 
All parameters have converged to the iteration tolerance 
of 0.0001. 

Parameter 
index

 Estrogen metabolism 
model parameters

1 −0.467
2 0.047
3 0.938
4 0.115
5 1.037
6 1.150
7 −0.576
8 −0.426
9 −0.322
10 0.010
11 0.218
12 −0.337
13 0.205
14 0.011
15 −0.152
16 −0.927
17 0.086
18 0.045
19 0.010
20 −0.043
21  0.189

Grammatical Immune System Evolution for Reverse 
Engineering Nonlinear Dynamic Bayesian Models
B.A. McKinney and D. Tian
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