1494 Article Views
Publication Date: 01 May 2008
Journal: Bioinformatics and Biology Insights 2008:2 215-237
Abstract Angelica Lindlöf1, Marcus Bräutigam2, Aakash Chawade2, Olof Olsson2 and Björn Olsson1
1School of Humanities and Informatics, University of Skövde, Box 408, 541 28 Skövde, Sweden. 2Department of Cell and Molecular Biology, Göteborg University, Box 462, 403 20 Göteborg, Sweden.
Abstract
The detection of differentially expressed genes from EST data is of importance for the discovery of potential biological or pharmaceutical targets, especially when studying biological processes in less characterized organisms and where large-scale microarrays are not an option. We present a comparison of five different statistical methods for identifying up-regulated genes through pairwise comparison of EST sets, where one of the sets is generated from a treatment and the other one serves as a control. In addition, we specifically address situations where the sets are relatively small (~2,000– 10,000 ESTs) and may differ in size. The methods were tested on both simulated and experimentally derived data, and compared to a collection of cold stress induced genes identified by microarrays. We found that combining the method pro- posed by Audic and Claverie with Fisher’s exact test and a method based on calculating the difference in relative frequency was the best combination for maximizing the detection of up-regulated genes. We also introduced the use of a flexible cutoff, which takes the size of the EST sets into consideration. This could be considered as an alternative to a static cutoff. Finally, the detected genes showed a low overlap with those identified by microarrays, which indicates, as in previous studies, low overall concordance between the two platforms.
Discussion
No comments yet...Be the first to comment.
I had an excellent experience publishing our review article in Clinical Medicine Reviews. The managing editor was very helpful and the process was very timely and transparent.Professor Jonathan A. Bernstein (University of Cincinnati College of Medicine, Division of Immunology, Allergy Section, Cincinnati, OH, USA) What our authors say
Copyright © 2010 Libertas Academica Ltd (except open access articles and accompanying metadata and supplementary files.)