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Abstract: The detection of differentially expressed genes from EST data is of importance for the discovery of potential 
biological or pharmaceutical targets, especially when studying biological processes in less characterized organisms and 
where large-scale microarrays are not an option. We present a comparison of fi ve different statistical methods for identify-
ing up-regulated genes through pairwise comparison of EST sets, where one of the sets is generated from a treatment and 
the other one serves as a control. In addition, we specifi cally address situations where the sets are relatively small (~2,000–
10,000 ESTs) and may differ in size. The methods were tested on both simulated and experimentally derived data, and 
compared to a collection of cold stress induced genes identifi ed by microarrays. We found that combining the method pro-
posed by Audic and Claverie with Fisher’s exact test and a method based on calculating the difference in relative frequency 
was the best combination for maximizing the detection of up-regulated genes. We also introduced the use of a fl exible 
cutoff, which takes the size of the EST sets into consideration. This could be considered as an alternative to a static cutoff. 
Finally, the detected genes showed a low overlap with those identifi ed by microarrays, which indicates, as in previous stud-
ies, low overall concordance between the two platforms.
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Background
Expressed sequence tag (EST) sets originate from randomly picked clones in a cDNA library and gen-
erate information about transcript abundance (Lindlof, 2003; Nagaraj et al. 2007). This information can 
be used for analyzing gene expression patterns from different conditions and has been valuable in the 
discovery of biologically interesting genes. Gene expression levels in unbiased cDNA libraries can be 
estimated by using the cognate frequencies of gene transcripts. The variation in frequency of ESTs 
sampled from different libraries can be used for detecting genes appearing to be differentially expressed 
in a biological experiment (Audic and Claverie, 1997; Claverie, 1999; Greller and Tobin, 1999; Man 
et al. 2000; Romualdi et al. 2003).

During the last years, several statistical methods have been proposed for detecting differentially 
expressed genes in multiple EST sets (Audic and Claverie, 1997; Claverie, 1999; Greller and Tobin, 
1999; Romualdi et al. 2001; Man et al. 2000; Ruijter et al. 2002; Stekel et al. 2000). In such experiments 
there are at least two sets and the aim is to investigate whether a gene is signifi cantly differently expressed 
in one set in comparison to the other(s). This approach has frequently been used for identifying tissue-
specifi c genes, and is also of importance when addressing the differences between normal and patho-
logical conditions. It is also a method used when comparing wild-type specimens with stressed ones or 
the differences in gene expression between different crop varieties (Bräutigam et al. 2005; Fei et al. 
2004; Gulick et al. 2005; Schmitt et al. 1999; Strausberg et al. 2001).

The effi ciency of several statistical methods used for this purpose has previously been evaluated 
(Romualdi et al. 2001). We intend to present another comparison of these statistical methods. However, 
in this study, the focus is different from that in previous studies. Here, we aim to address the differences 
between a control and treatment condition, i.e. a pairwise comparison between a normal and stressed 
condition, where the compared sets are relatively small (~2,000–10,000 ESTs) and the total number of 
ESTs in the two sets might differ. In addition, our aim is to investigate if the detection of up-regulated 
genes requires a rigid statistical test or if a more simple measurement would be suffi cient, and if the 
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combined outcome from several methods will 
improve the overall results.

The comparison of the statistical methods is fi rst 
performed on simulated data sets, since this 
provides a controlled environment where the 
methods can be properly tested. The observations 
from these tests are thereafter applied to the 
experimental data from cold stressed Arabidopsis 
thaliana plants.

Therefore we are presenting the results from 
the comparison of five different methods for 
identifying up-regulated genes in two EST sets, 
the χ2 test (χ2) (Ugoni and Walker, 1995), Fisher’s 
exact one-sided and two-sided test (Fone and 
Ftwo, respectively) (Blevins and McDonald, 
1985), the test developed by Audic and Claverie 
(1997) (AC), and a method consisting of simply 
calculating the difference in relative frequency 
between the two sets (Diff) (Fei et al. 2004; 
Mochida et al. 2006; Ogihara et al. 2003; Pavy 
et al. 2005; Lynn et al. 2003).

The results from the simulation studies show 
that the methods are comparable, but produce 
slightly different results, which indicate differences 
in their sensitivity. In addition, the simulation 
studies show that the combination of AC, Fisher’s 
and Diff increases the number of detected 
up-regulated genes, and that the size of the sets is 
important when setting a proper cutoff on the test 
values. Therefore, we introduce a fl exible cutoff, 
which takes this issue into consideration. In the 
simulation studies, this resulted in lower variability 
in the percentage of true positives (genes detected 
that are truly up-regulated in the treatment), when 
we compared the results from different simulations 
with a large variation in sample size. Using the 
fl exible cutoff a similar level of true positives 
was reported from all comparisons, despite 
the difference in size between treatment and 
control sets.

We tested the combination of the AC, Fisher’s 
and Diff methods together with the fl exible cutoff 
on experimental data derived from cold-stressed 
Arabidopsis thaliana plants, using non-stressed 
plants as a control. The results of this study show 
that the percentage of true positives was relatively 
low (~25%). This can be a result of various 
factors; for instance, there are many steps 
included when progressing from the biological 
experiments to the detection of up-regulated 
genes and each step is concerned with diffi culties 
that will affect the results. Additionally, we used 

a collection of cold induced genes identifi ed from 
microarray studies as a reference (Hannah et al. 
2005). Previous studies have shown a low overlap 
between the two techniques (van Ruissen et al. 
2005; Haverty et al. 2004; Kavsan et al. 2007) 
and the results indicate that the same applies for 
this study.

Results and Analysis

Statistical methods
The expression levels derived from an EST exper-
iment are represented by integers, which corre-
spond to the number of ESTs that have been 
matched to a specifi c gene. In order to identify 
differentially expressed genes, this expression 
measurement is compared between two or more 
sets, commonly originating from different condi-
tions, such as wild-type vs. treated plants. The key 
question is whether a gene is differentially 
expressed in one condition in comparison to the 
other. Since the expression values can be arranged 
in a two-way table (Fig. 1a), standard statistical 
tests, such as the χ2 test and Fisher’s exact test 
(Claverie, 1999), have been applied and used for 
detecting significant differences between the 
experimental conditions.

However, there has been some criticism against 
the application of these two tests to this type of 
data. It has been suggested that Fisher’s exact test 
is too conservative and therefore excludes a large 
proportion of biologically interesting genes (Audic 
and Claverie, 1997; Romualdi et al. 2001). The χ2 
actually tests whether the conditions differ as a 
whole, rather than for each gene individually, as 
desired (Audic and Claverie, 1997; Claverie, 
1999). Instead, Audic and Claverie, (1997) devel-
oped a pairwise test that was shown to be more 
sensitive and less conservative than Fisher’s exact 
and χ2 tests as it takes the specifi c characteristics 
of EST data into consideration. In addition, they 
showed that EST frequency distributions could be 
approximated by the Poisson distribution and 
incorporated this into the test, along with the size 
of each set, since the compared EST sets may dif-
fer in size.

In the comparisons conducted here we choose 
to focus on genes that are up-regulated in the 
treatment, since in experiments where transcripts 
have been sampled from a stress-situation 
the majority of the ESTs will originate from 
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up-regulated genes. For example, when the plant 
is subjected to cold stress, there is a redistribution 
of which biological processes are active and 
inactive. In this situation, energy producing 
processes, for example, are shut down, such as 
photosynthesis and development pathways. 
Instead, processes needed for protecting the cell 
against freezing are activated, such as the 
production of cryoprotectants, sugar and prolines 
(Beck et al. 2007; Chinnusamy et al. 2007). Genes 
involved in these signaling pathways will become 
overrepresented in EST sets derived from cold 
stress cDNA libraries and, consequently, be 
considered as up-regulated in the treatment when 
compared to a control.

Here, we applied the general χ2 2 × 2 test (χ2), 
the Audic and Claverie (1997) one-sided test (AC), 
and Fisher’s exact one- and two-sided test (Fone 
and Ftwo, respectively). We also included the one-
sided version of Fisher’s exact test, in contrast to 
previous studies where the two-sided version has 
been used. This was done since the interest here 
was in identifying up-regulated genes in one set in 
comparison to the other and we wanted to 

investigate whether the one-sided test might be 
more appropriate than the two-sided test. Addition-
ally, we also tested the approach by simply calcu-
lating the difference in relative frequency (Diff), 
since relative frequencies are commonly used when 
clustering EST expression profi les from different 
libraries (Fei et al. 2004; Pavy et al. 2005; Henry 
et al. 2004; Lynn et al. 2003; Marvanova et al. 
2002; Ogihara et al. 2003).

Since we were interested in genes that are 
up-regulated in the treatment, we wanted to exclude 
genes detected as differentially expressed but 
overrepresented in the control condition. In order 
to do so, we only regarded those genes that had a 
higher relative frequency in the treatment EST set 
than in the set generated from the control 
condition.

Simulation data
In real experiments, gene expression levels based 
on an EST set are represented by integers. Further-
more, highly expressed genes are more likely to 
be sampled from the cDNA library than weakly 
expressed ones, resulting in a larger number of 
transcripts for those genes. However, most genes 
are weakly or moderately expressed, and therefore 
most genes are represented by a small number of 
transcripts. This commonly results in most genes 
being sampled only once or twice, some being 
sampled more than twice, and very few being 
sampled a large number of times. This distribution 
can be modeled, for example, by the Log normal 
or the Gamma probability distribution (Fig. 2). In 
addition, the Poisson distribution has previously 
been suggested to be the most adequate for describ-
ing EST sampling data (Audic and Claverie, 1997; 
Claverie, 1999).

Based on these observations, we created pseudo 
cDNA libraries following any of the three distribu-
tions, from which we draw sets with varying 
sample sizes. In more detail, we created pseudo 
cDNA libraries containing around 1,000,000 
clones relating to 20,000 genes, and where the 
transcript abundance of a gene (denoted by x) fol-
lowed either:
i)  a Log normal distribution with mean µ = 1 and 

standard deviation σ = 1

 
f x

x
e x( ; , ) ln /µ σ

σ π
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2 22  for x � 0, 
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Figure 1. In a) it is shown that EST frequencies can be arranged in 
a two-way table, where Sample 1 and 2 refer to EST set 1 and 2, 
respectively. n1,j is the number of ESTs originating from gene g in set 
1 and 2, respectively, n2,j is the summed number of ESTs for all other 
genes in set 1 and 2, respectively, Ni. is the sum of row i, N.j the sum 
of column j and N is the grand total. b) The expected cell count E 
can be computed from the two-way table, by multiplying the row total 
and column total for a cell in the two-way table and thereafter dividing 
by the grand total.
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ii)  a Gamma distribution with shape α = 1 and 
scale β = 2.0
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iii) a Poisson distribution with shape λ = 1
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From each of these three pseudo libraries we 
simulated the transcript abundance of 4,000 genes 
(20% of the total 20,000) as up-regulated with a 
specified fold change (See Methods for more 
details on the library construction).

We generated several pseudo libraries for the 
treatment condition, to test different sample sizes 
as well as different levels of fold-change. Genes 
simulated as up-regulated were randomly chosen 
in each pseudo library, and, in addition, the fold 

Figure 2. Histograms of the Poisson, Log normal and Gamma distributed expression levels for 20,000 genes, respectively. The distributions 
were derived using the R statistical language (see Methods for more details) and sampling 20,000 individuals (i.e. genes). For the Log 
normal distribution a mean µ = 1 and standard deviation σ = 1 was used, for the Gamma distribution a shape α = 1 and scale β = 2.0 was 
used, and for the Poisson distribution a shape λ = 1 was used.
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change for the same gene varied in the different 
libraries.

It has previously been established that genes 
with a high expression level in combination with 
a high fold change are easily detected by the 
statistical methods (Romualdi et al. 2001). 
However, when the expression level decreases 
as well as the fold change, it gets more diffi cult 
to separate true differentially expressed genes 
from false positives. By varying the genes 
simulated as up-regulated, choosing both weakly, 
moderately and highly expressed genes, as well 
as their fold-change, this issue is taken into 
consideration.

Simulation studies—simple model
In the fi rst round of simulations the fold-change 
followed a normal distribution N(m, sd) with m = 2 
or m = 10, and sd = 1, i.e. each gene was randomly 
simulated with an up-regulation of 2 or 10 fold 
changes, with a slight spread set by the standard 
deviation. This was done merely to investigate the 
effect of having a relatively low fold-change in 
comparison to a high one. In these simulations, 
2,000 and 10,000 ESTs were sampled from each 
of the pseudo libraries.

Commonly a cutoff is set on the test value for 
the statistical methods that are used and genes are 
detected according to the cutoff. We tested differ-
ent values of the cutoff (Table 1) and derived 
ROC-curves (Receiver Operating Characteristic) 
based on these cutoffs (Fig. 3 and S1). The ROC 
curve is a plot of the sensitivity versus 1-specifi city 
when using a binary classifi er in combination with 
increasing or decreasing the threshold of the 
discriminator. Here, the classifi er is whether a gene 
is up-regulated or not and the discriminator is one 
of the different statistical methods. The plot can 
be used for investigating the performance of a 

test—the closer the ROC curve is to the upper left 
corner the higher is the overall accuracy of 
the test.

Since we recorded which genes were simulated 
as up-regulated, the sensitivity (the number of 
up-regulated genes present in the treatment set that 
are correctly detected by the method), the specifi c-
ity (the number of non-differentially expressed 
genes present in the treatment set that are correctly 
disregarded by the method), and the number of true 
positives (the number of true up-regulated genes 
among those detected by the method) could be 
calculated.

The results confi rm the conclusions made by 
Romualdi et al. (2001) that the effi ciency of the 
methods increases when the differential expression 
increases (Fig. 3), since the ROC curves indicate 
improved performance with larger fold-change 
values. However, the size of the EST set is also of 
importance, since the separation of true positives 
from false ones is improved when a high fold-
change is used in combination with a large sample 
set, compared to the situation when a high fold-
change is combined with a smaller sample set. 
Further, we can see that the different transcript 
distributions generate almost identical results 
(Fig. 3, S1 and S2).

Interestingly it was noted that the Diff method 
performs as well as the other statistical methods. 
The χ2 test performs slightly worse than the other 
methods. Fisher’s test has previously been 
criticized and not considered appropriate for this 
type of data (Audic and Claverie, 1997; Romualdi 
et al. 2001). On the other hand, this test should 
be used when the sample size is too small for the 
χ2 test. Here, we can see that both Fisher’s one- 
and two-sided tests perform as well as or better 
than the other methods. Additionally, the one-
sided test yielded a slightly better result than the 
two-sided test.

Simulation studies—more complex 
model
In the second round of simulations the fold-
change values followed an exponential probabil-
ity distribution with λ = 1, to get a more 
realistic model. The choice of probability dis-
tribution was based on a histogram of gene 
expression values from a real microarray exper-
iment, where it could be observed that the val-
ues approximately followed this distribution 

Table 1. Cutoffs used when detecting up-regulated 
genes and are marked as circles in the true positive 
rate curve fi gures.

Diff χ AC Fone Ftwo
0.002 0.01 0.01 0.01 0.01
0.001 0.05 0.05 0.05 0.05
0.0005 0.1 0.1 0.1 0.1
0.0003 0.2 0.15 0.2 0.2
0.0002 0.4 0.2 0.4 0.4
0.0001 0.5 0.5 0.5
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(Fig. 4). The microarray experiment was 
conducted on cold-stressed Arabidopsis thaliana 
plants, where the plants had been stressed 
by cold temperature at 4 °C and compared 
to non-stressed plants. The microarray experi-
ment was generated by AtGenExpress (see 
Acknowledgement) and downloaded from TAIR 
(Garcia-Hernandez et al. 2002). The histogram 
shows all genes with at least a 2 fold-change at 
time point 0.5 h.

As in the above simulation study, both 2,000 
and 10,000 clones were sampled from each gen-
erated pseudo library. After assessing the rate of 
true positives, it was revealed once again that all 
methods perform on a comparable level (Fig. 5, 
S2 and S3). The χ2 test performs slightly worse 
than the other methods when the size of the EST 
sets increases (see Fig. 5 for the χ2 test when 
10,000 ESTs from treatment are compared 
with 10,000 ESTs from control). Additionally, 
we can see that for very low p-values no genes 
are detected as up-regulated (as an example, 
see Fig. 5 and the χ2 test when 10,000 ESTs 
from treatment are compared with 2,000 ESTs 
from control).

In previous studies it has been reported that the 
different methods are not entirely overlapping in 
the results, which indicates differences in their 

sensitivity (Fei et al. 2004). This can also be 
deduced from Figure 5, since the methods report 
varying numbers of detected genes and different 
percentages of true positives at comparable cutoffs. 
For example, when studying the comparison for 
which 10,000 ESTs were picked from both the 
treatment and control library the AC test reports 
544 detected genes with 99% true positives when 
using a cutoff of 0.1. This is comparable to Fone 
when using a cutoff of 0.1. However, this test 
reports 298 detected genes with 100% true 
positives.

Figure 3. ROC curves for the identifi cation of up-regulated genes. Genes were simulated as having either a 2-fold change (left) or a 10-fold 
change (right). Solid and dashed lines indicate 2,000 and 10,000 sampled ESTs, respectively, and the colors refer to the different statistical 
methods. For these fi gures the transcript abundance followed a log normal distribution. For the other distributions, see supplemental fi gure 
S1. Curves show the difference in relative frequency. Black: Diff, red: χ2, green: AC, violet: Fone, blue: Ftwo.

Figure 4. The histogram shows the distribution of fold change values 
(FC), where FC � 2, taken from a real microarray experiment (see 
text and Methods for more details).
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Data mining on simulated data
Since the results from the methods differ slightly, 
with varying numbers of detected genes at differ-
ent cutoff levels, it can be diffi cult to decide which 
cutoff to use and which method to rely on. It may 
also be the case that the best results are obtained 
when using a combination of methods. The problem, 
of course, is to decide how the different methods 
should be combined in order to obtain the best 
results. To investigate this issue we applied data 
mining techniques on the results, and derived deci-

sion trees which might guide the choice of the 
optimal combination of statistical methods.

For this simulation study we 1) sampled a 
random number of ESTs from the treatment and 
control pseudo library, 2) thereafter applied the 
different methods to the generated EST sets, and 
3) computed test values from all statistical methods 
for each pairwise comparison. This sampling and 
pairwise comparison procedure was conducted 20 
times; for each sampling the genes simulated as 
up-regulated were randomly chosen. In addition, 

Figure 5. These plots show the percentage of true positives detected by the different statistical methods versus the total number of detected 
genes according to different cutoffs. Here, the transcript abundance followed a log normal distribution and the size of the EST sets differed 
in the treatment and control set. Black: Diff, green: AC, violet: Fone, blue: Ftwo, red: χ2. The circles correspond to different cutoffs according 
to Table 2 for each statistical method.
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the fold-change set for each up-regulated gene was 
also randomly chosen from the underlying expo-
nential probability distribution.

The concatenated results from the 20 compari-
sons together with the recorded class, i.e. whether 
a gene was simulated as up-regulated or not, were 
used as input to the decision tree induction algo-
rithm J48 in the Weka software (Frank et al. 2004). 
Trees were thereafter generated using the entire 
training set (no cross-validation was used; see 
Figure S4 for an excerpt of input data to J48). 
Furthermore, this whole procedure was repeated 
fi ve times for each transcript distribution, i.e. fi ve 
trees were generated for each distribution, where 
each tree was based on data generated from 
20 different simulations.

The decision trees generated by J48 varied quite 
extensively among the different training sets 
(Fig. 6 and S5), which implies that the algorithm 
has diffi culties in making a correct classifi cation 
and is strongly dependent on the training set used. 
This conclusion is also supported by a relatively 
moderate percentage of correctly classified 
instances (on average ~69%). The complexity of 
the trees varied from being very simple, including 
only a few nodes, to more complex with 10–20 
nodes. The trees generated when using a Poisson 
distribution were in general less complex than the 
others (data not shown).

These observations indicate a lot of noise in the 
data and, hence, it is diffi cult to identify up-regulated 
genes from the EST data. This most likely relates 
to the large number of non-affected genes in the 
sets. Many of the genes in the pseudo libraries were 
not simulated as up-regulated, but will nevertheless 
be picked up in the sampling of the library due to 
a high or moderate expression value. This also 
relates to the real situation, i.e. the majority of the 
genes expressed in a cell do not participate in the 
stress response, but are likely to be picked from 
the cDNA library if they have a high or moderate 
expression level. Consequently, these genes will 
become false positives. The number of false 
positives highly depends on the number of 
up-regulated genes and the level of fold-change 
for those genes. If the up-regulated genes have a 
much higher fold-change, then the number of false 
positives will decrease.

However, there are some common characteristics 
among the trees, such as the AC test almost always 
being the root node. This test also seems to have a 
critical value around 0.18–0.19 in the simulation 

studies, where values larger than this threshold need 
to be supported by an additional method. In addition, 
the size of the EST set sometimes appears as a node 
in the decision tree, thus implying that the sample 
size is of importance when setting the cutoff. For 
example, in Figure 6 the attribute ‘Lib2Size’ is 
represented by a node in the tree, which indicates 
that the size of the control library (i.e. library 2 in 
the comparison) is used for separating up-regulated 
from non-differentially expressed genes.

Testing and applying rules
Based on an analysis of the trees, a range of simple 
rules were tested on a new round of simulated data. 
Since size appeared as a node in the decision trees, 
we additionally tested different combinations of 
sample sizes. The sample size was divided into the 
categories small (2,000–4,000 ESTs) medium 
(5,000–7,000 ESTs) and large (8,000–10,000 
ESTs), and a random number of transcripts were 
sampled within each range.

We tested all combinations of sample sizes from 
each pseudo library, i.e. fi rst a small set from the 
treatment vs. a small set from the control library, 
second, a small set from the treatment vs. a 
medium-sized set from the control, and so on. For 
each combination the sampling was repeated three 
times, each time randomly choosing genes as up-
regulated, as well as setting their fold-change value 
to a randomly chosen one from the underlying 
exponential probability distribution.

Initially, different cutoffs on the test values were 
implemented and tested (Table 2, rule R1-R22). 
For example, for the AC test four different cutoffs 
(p-value={0.16, 0.18, 0.19, 0.29}) were used to 
detect up-regulated genes. For each cutoff used, 
the percentage of true positives as well as the sen-
sitivity was calculated for all rounds of simulations 
(i.e. three repeats of all combinations of different 
sample sizes). The results from these simulations 
can be viewed in Figure 8 where the left boxplots 
show the percentage of true positives and the right 
ones the sensitivity for each method.

It can be deduced from the boxplots in 
Figure 8 that a more relaxed cutoff results in a 
lower percentage of true positives. On the other 
hand, a larger number of up-regulated genes are 
detected (higher sensitivity). For example, an AC 
cutoff of 0.16 results in an average of ~70% true 
positives and ~30% of the total number of 
up-regulated genes (sensitivity). When increasing 
the cutoff to 0.20, this yields ~65% true positives 
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Figure 6. Example of a decision tree generated by the induction algorithm J48, available in the Weka program (Frank et al. 2004). Each leaf 
rectangle represent a class—either up-regulated (U) or non-differentially (N) expressed. The circles and the expressions on the edges 
indicate different attributes and conditions that must be fulfi lled, respectively. The nodes labeled ‘AC’ and ‘Diff’ represent the statistical 
methods AC and Diff, respectively and the values on the associated edges correspond to p-values (for AC) and difference in relative frequency 
(for Diff). The node ‘Lib2Size’ refers to the size of the control set (i.e. library 2 in the comparison). The values inside the squared boxes 
indicate the total number of genes that have been detected and the number of genes with that class, respectively.

AC

ACDiff

AC Lib2Size

AC

U (16706/1358)

U (316/74) N (15/4)

N (46491/7707)

N (3197/1028)

N (180/79)U (3413/1155)

<=0.160914 >0.160914

<=0.000083 >0.000083

<=0.156586 >0.156586

<=0.193294 >0.193294

<=2858 >2858

<=0.187498 >0.187498

and ~40% sensitivity (compare the boxplots for 
0.16 and 0.20 for the AC method in Fig. 8). 
Considering true positives, the best results are 
obtained with Fone or Ftwo using a cutoff of p � 
0.1, which results in an average of ~99% true 
positives. However, the sensitivity is very low, 
with only ~2% on average. It can also be noticed 
that the results from the AC test in general vary 
less among the different sets, with fewer outliers 
and more compact boxes, regardless of the cutoff 
used. This indicates that the sizes of the ESTs sets 
are less important in the comparisons, than for 
the other methods. For the others, the percentage 
of true positives and the sensitivity begins to vary 
greatly when the cutoff becomes more relaxed 
(with the exception for Diff at D � 0.0001 and 
χ2 at p � 0.5). The results from these methods 
depend on both the number of sequenced ESTs 
and the number of up-regulated genes present in 
the sets.

Since the results from the tests of using a 
specifi ed cutoff and the decision trees implied that 

the cutoff was dependent on the sample size, we 
incorporated this characteristic in yet another 
round of rules and simulations (Table 2, rule 
R23–R27). The diffi culty here is that the sample 
size varies among the EST sets, where commonly 
one set is large and the other one much smaller. 
We therefore introduce the use of a fl exible cutoff 
C, which is a percentage that is used for determine 
the cutoff on the test values (i.e. p-values or the 
difference in relative frequency), and is based on 
the number of detected genes from a comparison 
and their corresponding test values. For different 
possible cutoffs on the test values, e.g. p = {0.001, 
0.005, 0.01, 0.05, 0.1}, the percentage number of 
genes with �p is calculated. For example, in one 
comparison 12% of the detected genes have a 
p � 0.001, 34% a p � 0.005 and 52% a p � 0.01. 
The level of C determines which test value cutoff 
will be used in deriving up-regulated genes, and 
this will be the test value that have been derived 
for �C% of the genes (pseudo code shown in 
Fig. 7). Referring to the example, if C = 50%, the 



224

Lindlöf et al

Bioinformatics and Biology Insights 2008:2 

test value cutoff will be 0.005, since the percentage 
number of genes with p � 0.005 is 34%, which is 
less than C.

We tested four different levels on the fl exible 
cutoff: C = 0.1 (10%), 0.3 (30%), 0.5 (50%) and 
0.7 (70%), and derived the percentage of true 
positives and sensitivity for each method using the 
same simulated data as in the above study.

For the AC method the fl exible cutoff only 
affects the results slightly when changing the value 
on C (see Fig. 9, true positives and sensitivity 
for AC). The average is ∼70% and ∼40% for 
percentage of true positives and sensitivity, 
respectively. The only exception is when using a 
highly stringent value, C = 0.1, for which the 
percentage of true positives reaches ∼80% and the 
sensitivity ∼20%.

For the remaining methods, the largest differ-
ence appears when the cutoff is increased from 
0.1 to 0.3 or from 0.5 to 0.7. When a cutoff of 
either 0.3 or 0.5 is used there are almost similar 
results in both percentage of true positives and 
sensitivity. The only exception is for the χ2 test, 
for which the number of false positives greatly 
increases when the cutoff is increased to 0.5. This 
method also shows the highest variability in the 
results, for some generated EST sets the percent-
age of true positives ranges from very high to very 
low when considering the same cutoff. One 
example is the χ2 test when C is set to 0.3, for 
which the percentage of true positives range from 
99% to 59%.

However, the different methods do not produce 
exactly the same results, even when a fl exible 
cutoff is used. Therefore, we tested an additional 
number of rules where the different statistical 
methods were combined (Table 2, R18–R24). In 
this case we tried the combination of ‘leaving one 
out’, i.e. all methods except one were combined 
with the fl exible cutoff. This was done to investi-
gate whether one method had a larger impact on 
the results than any of the others (Fig. 10). Here, 
almost identical results were generated for all 
combinations, with the only exception being when 
the χ2 test was left out. Therefore, only the results 
for leaving out the AC and χ2 tests are shown in 
Figure 10. When χ2 is left out identical results are 
produced for cutoff 0.3 and 0.5 regarding true 
positives, which ranges from 77% to 59%. The 
range for the sensitivity is slightly increased when 
the cutoff is increased to 0.5. The upper whisker 
in the boxplot is raised from 47% to 56%, which 

Table 2. These rules implemented and tested on the 
simulated data. C relates to the fl exible cutoff used in 
the detection of up-regulated genes. See Figure 7 for 
pseudocode on how C is derived.

No Rule

1 IF AC � 0.16
2 IF AC � 0.18
3 IF AC � 0.19
4 IF AC � 0.20
5 IF Fone � 0.1
6 IF Fone � 0.2
7 IF Fone � 0.25
8 IF Fone � 0.4
9 IF Fone � 0.5
10 IF Ftwo � 0.1
11 IF Ftwo � 0.2
12 IF Ftwo � 0.25
13 IF Ftwo � 0.4
14 IF Ftwo � 0.5
15 IF χ2 � 0.1
16 IF χ2 � 0.2
17 IF χ2 � 0.4
18 IF χ2 � 0.5
19 IF Diff � 0.0003
20 IF Diff � 0.00025
21 IF Diff � 0.0002
22 IF Diff � 0.0001
23 IF AC � C
24 IF Fone � C
25 IF Ftwo � C
26 IF Diff � C
27 IF χ2 � C
28 IF AC � C OR Fone � C OR Ftwo � C 

OR Diff � C
29 IF AC � C OR Fone � C OR Ftwo � C 

D OR χ2 � C
30   IF AC � C OR Fone � C OR Diff � 

C OR χ2 � C
31   IF AC � C OR χ2 � C OR Ftwo � C 

OR Diff � C
32   IF χ2 � C OR Fone � C OR Ftwo � C 

OR Diff � C
  IF AC � C OR χ2 � C OR Fone � C 

OR Ftwo � C OR Diff � C

See text and Methods for how C is computed.
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indicates slightly more up-regulated genes have 
been detected.

The peculiarity with the χ2 test has to do with 
the large variability in the results produced by this 
method, which was already observed in previous 
simulation studies. The χ2 test introduces more 
false positives than the other methods when the 
fl exible cutoff is increased from 0.3 to 0.5.

As a last rule, we tested combining all methods 
with the fl exible cutoff, which gives results similar 
to those obtained when the χ2 is included in the 
combination of four methods (Fig. 10).

Experimentally generated data
Since the simulation studies indicated that the 
combination of the AC, Fone, Ftwo and Diff 
methods together with a fl exible cutoff was the 
best approach to detect up-regulated genes, we 
wanted to test this approach on experimentally 
generated data.

The data used in these studies originate from 
cold-stressed A. thaliana plants, with a control 
set of ESTs from non-stressed plants. We also 
included a set from a subtracted library as a 
comparison. The sets consist of ESTs originating 
from pooled cDNA libraries, collected during 
cold-stress at time points 1 h, 2 h, 5 h, 10 h and 
24 h (this also regards the subtracted library), 

and the sequences were downloaded from dbEST 
(Boguski et al. 1993) (see Methods for more 
details on download from dbEST). The main 
difficulty in this step was to select a proper 
control set. Since we wanted to exclude the 
possibility of detecting tissue-specifi c genes, the 
control set had to be from the same tissue as used 
in the stress experiment. We also decided to 
exclude sets with fewer than 2,000 ESTs, as we 
regarded those as too small for detecting differ-
entially expressed genes. This ruled out many of 
the publicly available data sets in dbEST and 
fi nally only left the control set that were used in 
this study.

One of the cold-stress sets was much larger than 
the other cold-stress set; 22,229 ESTs in comparison 
to 2,042 ESTs. The set from the subtracted library 
consisted of 1,250 ESTs and the control set pf 
15,790 ESTs. Consequently, this gave the oppor-
tunity to investigate the issue of having large dif-
ferences in sample size.

The main issue in detecting up-regulated genes 
from EST data concerns the identifi cation of which 
gene the EST originates from. Commonly, EST 
analysis follows the sequencing of the tags, with 
the aim of grouping tags according to their gene 
origin. This step involves clustering and assembly 
of the ESTs into contigs and singletons. Optimally, 
each contig and singleton should represent a unique 

Figure 7. Pseudocode for the algorithm of using a fl exible cutoff for detecting up-regulated genes in a treatment vs. a control set.
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gene; however, this is not always the case. ESTs 
have poor sequence quality, some are sequenced 
from the 5’ end and others from the 3’ end, some 
genes may be polymorphic, etc. Therefore, the tags 
from the same gene may not assemble together and 
tags from different genes may end up in the same 
contig. This issue has been a topic for decades and 
there is no real solution to overcome this problem, 
although several algorithms designed for perform-
ing EST analysis with reasonable accuracy have 
emerged over time.

In this study, the available on-line tool 
EGassembler (Masoudi-Nejad et al. 2006) was 
used. This program performs clustering and 
assembly of the sequences. It also trims low-quality 
ends and masks sequences that match plastids or 
mitochondric DNA. The sequences from all sets 
were concatenated and fed to the program, which 
was run using default settings.

The next step in identifying which genes are 
up-regulated is to identify which genes are actually 
present in the set(s). This is commonly done by 
performing similarity searches of the contigs and 
singletons against a database of sequenced genes, 
such as Blast searches against the nr-database or 
against a sequenced genome. Like in the EST 
analysis, this step is also associated with a number 
of problems. The main diffi culty here is to set a 
proper E-value cutoff that will distinguish true 
matches from false ones.

Figure 8. Boxplots illustrating the percentage of true positives 
detected (plots on the left) and sensitivity (plots on the right) for each 
statistical method, when using different cutoffs for deriving up-regu-
lated genes (see Table 2 for an outline of cutoffs used). On the x-axis 
are the different cutoffs and on the y-axis the percentage of true 
positives and sensitivity, respectively.

Figure 9. Boxplots illustrating the percentage of true positives 
detected (left plots) and sensitivity (right plots) when applying the 
fl exible cutoff for detecting up-regulated genes in the two EST sets. 
On the x-axis are the different cutoffs and on the y-axis the percentage 
of true positives and sensitivity, respectively.
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In this study, we used tBlastx searches with 
the contigs and singletons against all sequenced 
genes from A. thaliana, and we tested different 
cutoffs on the E-value (data not shown). Setting 
a more stringent cutoff result in fewer repre-
sented genes in the data sets and will also yield 
a smaller overlap between the different sets. We 
settled for a cutoff of E � 10−5, as an attempt to 
not rule out too many truly expressed genes, but 
also to keep the number of incorrectly predicted 
ones at a low level.

The number of contigs and singletons in the two 
non-subtracted sets were 1,584 and 6,545, respec-
tively, in the subtracted 886, and in the non-stressed 
set 5,116. However, after the similarity searches 
(E � 10−5) the number of genes reduced to 1,133, 
5,633, 845 and 3,418, respectively. This means that 
a number of contigs and singletons matched against 
the same gene and that some sequences did not 
receive a signifi cant match. Again, the inherent 

problems with ESTs apply, which makes it diffi cult 
to reliably infer the genes that are actually 
expressed.

In the simulation studies we recorded if a gene 
was up-regulated or not, and by that way we could 
identify which genes were true positives among 
the detected ones. This provided us with a means 
to compare the accuracy of the different methods. 
In order to have the same template when testing 
on experimental data, we used the collection of 
cold-induced genes in A. thaliana compiled by 
Hannah et al. (2005) as a gold standard. This 
collection consists of 4,037 genes reported to be 
induced in at least two independent microarray 
experiments and includes both up- and down-
regulated genes.

When comparing the genes represented in the 
sets we could see that an overlap existed, however, 
not only in the two cold-stressed sets, as expected, 
but also with the control set. This shows that genes 
expressed during both normal conditions and during 
stress responses have been picked up from the cDNA 
libraries. It can also be deduced that the overlap in 
the two stress sets is rather low, with only 57% (the 
smaller set) and 11% (the larger set) of the 
represented genes in each set. A lower percentage 
was expected for the larger set, as there are more 
ESTs, and thereby more genes, in this set. However, 
one would have expected that almost all genes in 
the smaller set should be represented in the larger 
one. These results indicate that a large proportion 
of different genes have been picked up from the two 
cDNA libraries. This is most likely due to chance 
playing a signifi cant role when picking clones, but 
could also be a result of both technical and biological 
variations in the cold-stress experiments.

Additionally, some of the genes represented in 
the control set are also in the collection of cold-
regulated genes (Table 3), which means that some 
of the genes participating in the cold response are 
also expressed during normal conditions. The total 
number of cold-regulated genes in the sets are: 
312 in the small set (28% of the total in this set), 
1,328 in the large set (24%), and in the control set 
823 (24%), respectively. This introduces another 
aspect of the diffi culties of detecting differentially 
expressed genes from EST data. Stress-induced 
genes may also be expressed and vary in expression 
during normal conditions, however, at a lower level 
(Fowler et al. 2005). This will have consequences 
when detecting cold-regulated genes, since some 
of these will also have an expression in the control 

Figure 10. Boxplots illustrating the percentage true positives detected 
and sensitivity (lower plot) when combining 1) χ2, Fone and Diff 
methods with a fl exible cutoff 2) AC, Fone and Diff methods with a 
fl exible cutoff and 3) all methods with a fl exible cutoff for detecting 
up-regulated genes in two EST sets. On the x-axis are the different 
levels of the fl exible cutoff used and on the y-axis the percentage 
true positives and sensitivity, respectively.
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set, which introduces the risk of being ruled out by 
the detection methods.

In the simulation studies we manually investi-
gated the generated statistical values from the 
comparisons in order to set proper cutoffs on the 
test values. For example, we chose p-value cutoffs 
for Fone at 0.1, 0.2, 0.25, 0.4 and 0.5 based on the 
produced results from the comparisons. In order 
to set proper cutoff levels for the real data, we took 
the same approach by manually inspecting the 
generated results. The histogram in Figure 11 
shows the number of genes at different cutoff 
intervals, when the level is incremented by 0.005 
for the AC, Fone and Ftwo and 0.00005 for the 
difference in percentage regarding the Diff method. 
This generated a good separation of the genes and, 
consequently, the cutoff levels were implemented 
according to this histogram.

Finally, we tested different levels for the fl exible 
cutoff and the results can be viewed in Figure 12. 
For both cold-induced EST sets the level of true 
positives is very low, ~25% for both sets, irrespec-
tively of the level of the fl exible cutoff. This is in 
disagreement with the simulation studies, where 
the percentage of true positive was very high at a 
low flexible cutoff level and, additionally, it 
decreased with an increased fl exible cutoff. On the 
other hand, the sensitivity increases dramatically 
when the fl exible cutoff increases and reaches to 
∼85% when C = 0.7. However, it should be noticed 
that the number of false positives also increases, 
as more genes are detected when the p-value 
becomes more relaxed.

It can also be noticed that the p-value cutoffs 
were relatively stringent for the real data sets. For 
example, when studying the results of using C = 0.7 
(worst-case scenario), the p-value cutoff level for 

Table 3. Comparison of the number of cold-induced 
genes in the different EST sets, according to a tBlastx 
search against A. thaliana genes using an E-value 
cutoff of 10−5. EST set: ‘RAFL4’ and ‘RAFL7’ are the 
cold stressed non-subtracted libraries and ‘Control’ is 
the non-stressed library; Total: the number of genes with 
a signifi cant match to at least one EST; Cold-induced: 
the number of genes in the sets reported by Hannah 
et al. (2005) as cold-inducible.

EST set Total Cold-induced
RAFL4 1133 312 (28%)
RAFL7 5633 1328 (24%)
Control 3418 823 (24%)

the AC, Fone and Ftwo methods was p � 0.145 
regarding the RAFL4 set (smaller) and p � 0.085 
regarding the RAFL7 set. When setting C = 0.1, a 
p-value of �0.025 and �0.005 for the RAFL4 and 
RAFL7 set, respectively, was used for both the AC, 
Fone and Ftwo.

As a comparison, the ESTs picked from the 
subtracted library corresponded to 845 expressed 
genes of which 251 (29.7%) had a signifi cant match 
against a cold-induced gene. This is on a level 
comparable to the number of stress-induced genes 
included in the other sets.

Discussion
Expressed sequence tags (ESTs) offer a relatively 
quick and cost-effective way of surveying 
expressed genes during specified conditions, 

Figure 11. Histograms over the generated statistical test values for 
the A. thaliana cold-induced EST sets RAFL4 and RAFL7, respec-
tively, when compared to a non-stressed set.
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e.g. when searching for genes participating in a 
stress response or a pathological condition. The 
identifi cation of differentially expressed genes 
from this type of data is important when obtaining 
an understanding of the genetic regulatory machin-
ery underlying the biological processes, as well as 
for the discovery of molecular markers and poten-
tial pharmaceutical targets.

In this study, we compared different methods 
for detecting differentially expressed genes from 
pairwise comparisons of EST sets, where one of 
the sets was generated from the condition under 
study and the other one served as a control. We 
generated artificial data and applied different 
statistical tests; the test statistic proposed by Audic 
and Claverie, (1997), the Fisher’s one- and 
two-sided exact test, the χ2 test and a method 
consisting of calculating the difference in relative 
frequency. We also tested different probability 
distributions to generate EST data from; the Log 
normal, Gamma and Poisson distributions. The 
use of artifi cial data allowed us to test and evaluate 
the different methods in a controlled environment. 
We were especially interested in the situation 
when the data sets differed in size, were relatively 
small, and were generated from stress-related 
conditions.

We conclude from the simulation studies that 
the results are similar for all probability distribu-
tions and that the accuracy of the methods does not 
rely on a correct assumption regarding the distribu-
tion. However, the AC statistic performed slightly 
better when the Poisson distribution was used, 
which relates to the fact that this method takes the 
Poisson distribution into consideration.

Romualdi et al. (2001) investigated the perfor-
mance of a number of statistical tests when applied 
to multi-library comparisons with one and two out-
liers (i.e. genes simulated as differentially expressed 
in either one or two libraries), and assessed the per-
formance by studying the percentage of false nega-
tives (rather than true positives, as in our study). 
Although their simulation studies are not entirely 
comparable to ours, we can still draw some conclu-
sions from them. Their results showed that the gen-
eral multiple χ2 test was the most effi cient when 
applied to multi-library comparisons with two outli-
ers. The χ2 2 × 2 test, which was used in our studies, 
performed moderately well when applied repeatedly 
to the multiple libraries, with both one and two out-
liers. This partly supports the results from our simu-
lation studies, since we investigated the results from 
simulated pairwise comparisons, which have only 
one outlier. Consequently, it seems that the general 
multiple χ2 test is better for multi-library compari-
sons, while the χ2 2 × 2 is not appropriate for either 
pairwise nor multiple library comparisons.

It is interesting that Fisher’s one-sided and two-
sided test performed equally well as the other 
methods, in contrast to previous studies (Audic and 
Claverie, 1997; Romualdi et al. 2001). In both 
Audic and Claverie (1997) and Romualdi et al. 
(2001) Fisher’s two-sided test was used and the 
one-sided was not included in the testing. Further-
more, Audic and Claverie (1997) exemplifi ed that 
Fisher’s two-sided test is always more conservative 
than AC using a set with only 1,000 ESTs. We agree 
with this, since the p-values for AC is always 
smaller than for Fone and Ftwo. However, the great 
difference that was shown by Audic and Claverie 

Figure 12. Percentage of true positives and sensitivity when using the combination of methods and a fl exible cutoff. The fi rst four levels on 
the left in each fi gure show the percentage of true positives, while the remaining levels show the sensitivity.
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(1997) cannot be seen in our results. This might 
relate to differences in the size of the EST sets, as 
we used larger sets than Audic and Claverie (1997), 
but this has to be further analyzed before drawing 
any conclusions. Additionally, the difference in 
p-values does not tell us anything about the test’s 
performance, i.e. whether AC is better at separating 
true positives from false ones because it generates 
smaller p-values. Our results indicate quite the 
opposite, that the two methods are comparable and 
that both detect false positives to a similar extent. 
The deciding factor seems to be the cutoff set for 
detecting up-regulated genes, and this has been 
considered in the fl exible cutoff.

Romualdi et al. (2001) simulated multi-library 
comparisons, the results of which indicated that 
Fisher’s exact test may not be appropriate for such 
studies. Conversely, we cannot conclude that 
Fisher’s exact test is inappropriate for detecting 
differentially expressed genes. We found quite the 
opposite, that the test is most suitable for this type 
of analysis. The Fisher’s one-sided test was also 
used by Ruijter et al. (2002) in a SAGE-simulation 
experiment, where they reached similar results.

Additionally, it is also interesting that the 
method of calculating the difference in relative 
frequency, which is a less rigid statistical method, 
performs as well as the statistical tests.

As in previous studies, our simulation studies 
showed that the methods are comparable, but 
produce slightly different results, which indicate 
differences in their sensitivity. Since the results 
from the methods differ, a combination of them 
might increase the number of detected differentially 
expressed genes. We therefore investigated this 
issue more closely by deriving decision trees, and 
by implementing and testing a range of simple 
rules. The results from these simulation studies 
showed that the number of detected up-regulated 
genes does increase when the AC, Fone and Ftwo 
and Diff methods are combined. However, the use 
of the χ2 test in combination with any of the other 
methods introduced more false positives than when 
it was excluded.

The decision trees also showed that the size of 
the libraries is of importance when setting a proper 
cutoff on the test values, since this attribute 
appeared as a node in the trees. This led to the 
introduction of a fl exible cutoff, which can be used 
as an alternative to a static one. The advantage of 
this approach is that the results became less sensi-
tive to the size of the EST sets.

The observations made from the simulation 
studies were implemented and tested on experimental 
data, where the ESTs originate from cold stressed 
A. thaliana plants. Other aspects of diffi culties in 
detecting differentially expressed genes from this 
type of comparison were brought to our attention. 
These issues relate to the inherent properties of EST 
data, such as poor sequence quality, polymorphism 
and unknown gene origin, as well as to the design 
of the experiments. For example, low abundance 
of tags from each gene and a lack of proper control 
sets makes it diffi cult to relate each EST to the 
correct original gene, and consequently to derive a 
correct expression value for each gene. This will 
have consequences when detecting differentially 
expressed genes, since the methods rely on correctly 
derived expression values.

We used a collection of cold-induced genes in 
A. thaliana compiled by Hannah et al. (2005) as 
gold standard, which provided us with a means to 
evaluate the accuracy of the combined methods. 
The methods identifi ed a large number of genes 
that were not identifi ed in the microarray studies, 
since the percentage of true positives was very low, 
irrespective of the threshold set on the fl exible 
cutoff. This may relate to one or several different 
factors. The cold-induced genes detected by the 
microarrays may, for various reasons, not be pres-
ent in the cDNA library. Alternatively, they may 
not have been picked up from the library. Some of 
the cold-induced genes were shown to be present 
in both the cold-stress set and the control set. Since 
most of the genes have low expression (few ESTs), 
there might be a lack of signifi cantly differentially 
expressed genes, which results in many of the 
genes being discarded by the methods.

There is also the possibility that the two 
different types of techniques identify different sets 
of cold-induced genes. Previous studies have 
shown a limited concordance between tag 
sampling methods and microarrays (van Ruissen 
et al. 2005; Haverty et al. 2004; Kavsan et al. 
2007). Consequently, this is a possible cause for 
the low overlap. The EST sequencing technique 
has a few parameters that affect the results and 
focuses on expressed genes. However, it is less 
sensitive than microarrays, since the sets commonly 
originate from a pooled cDNA library including 
several time points. Microarray studies give a 
higher sensitivity, but on the other hand, there are 
many parameters in the microarray data analysis 
that can give very different results.
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Additionally, Gene Ontology annotation was 
downloaded from TAIR website, which revealed that 
many of the false positives are transcription factors, 
transporters, genes coupled to the photosynthesis, 
genes with a catalytic activity, transmembrane pro-
teins etc., which are all important for the stress 
adaptation. A large proportion of the genes are also 
annotated as either having an unknown molecular 
function and/or biological process. Hence, the 
possibility that many of the false positives are cold-
induced is apparent, although they have not been 
annotated as such. There is also the possibility that 
the collection of cold-induced genes used here as a 
template may not be the most appropriate.

In conclusion, identifying differentially 
expressed genes from EST data using relatively 
small sets is a diffi cult task. The result is dependent 
on many steps, which also rely on each other. First, 
there are the biological experiments that must 
ensure that the genes participating in the biologi-
cal process under study are really induced. There-
after comes the construction of cDNA libraries, 
which are based on the biological experiments, 
and picking of clones. This step also introduces 
another dilemma. The genes may be present in the 
library, but they may not be picked up, since 
chance plays such a large role in this step.

Thereafter comes the identifi cation of expressed 
genes and deriving a correct expression value for 
each gene. This step is dependent on the quality of 
the sequences, as well as the abundance of ESTs for 
each gene, i.e. picking the right clones from the 
library. The statistical methods rely on correct 
expression values, and consequently, if the ESTs are 
not matched to their true genes of origin the methods 
will detect false positives. The choice of control set 
is also of importance. For example, if ESTs generated 
from a different tissue is used as a control, then the 
genes detected might instead be tissue-specifi c.

Finally, EST sequencing experiments will gen-
erate information on genes participating in a bio-
logical process. This is of signifi cant importance 
when studying processes in organisms that do not 
have a sequenced genome and where large-scale 
microarrays are not an option. However, as an 
alternative of using statistical methods, focused 
microarrays (also called ‘boutique’-microarrays) 
constructed on the basis of the EST data could be 
the next step. The microarrays will increase the 
sensitivity, compared to EST sequencing, and 
thereby might give a more reliable result regarding 
which genes are actually differentially expressed.

Methods

Pseudo cDNA libraries
The simulation studies were based on pseudo 
cDNA libraries and these in turn were based on 
20,000 genes following the Log normal, Gamma 
or Poisson probability distribution, by generating 
20,000 random deviates using the rnorm, rgamma 
and rpois functions, respectively, in the statistical 
language R.

The generation of pseudo cDNA libraries and 
the sampling from those were done by using an 
in-house developed PHP-script. For each of the 
20,000 genes, the number generated by the random 
deviate function was multiplied with 30 and 
thereafter rounded to the closest integer, so that, 
e.g. gene A was represented by three, gene B by 
one and so on. The results were stored in an array, 
where each gene was represented as many times 
as the number generated previously, i.e. gene A 
was represented with three elements in the array, 
gene B with one element, and so on. This resulted 
in an array containing roughly 1,000,000 elements. 
From this array a number of samples were 
randomly picked, using the mt_rand function 
available in PHP.

In the case of the stress-simulated cDNA librar-
ies, 4,000 genes were randomly chosen from the 
20,000 genes previously generated, and simulated 
as up-regulated using two different approaches. 
In the fi rst approach, the fold-change values fol-
lowed a normal distribution, with mean m = 2 or 
m = 10 and standard deviation sd = 1. The random 
deviate previously generated was multiplied with 
the absolute value of the randomly drawn sample 
from the normal distribution. In the second 
approach, the fold-change value was randomly 
generated from an exponential probability distri-
bution, with mean λ = 1, and the random deviate 
was multiplied with the value sampled from this 
distribution.

ROC and true positive rate curves
For generating Receiver Operating Characteristic 
(ROC) and true positive rate curves a number of 
cutoffs were chosen for each method tested and 
for each cutoff the number of derived true positives 
(TP), false positives (FP), false negatives (FN) 
and true negatives (TN) was calculated. ROC 
curves were thereafter generated by plotting the 
sensitivity vs. 1-specifi city. True positive rate 
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curves were generated by plotting the percentage 
of TPs vs. the cutoffs.

Decision trees
The software Weka (Frank et al. 2004) includes a 
range of machine learning algorithms for data min-
ing problems, such as classifi cation, clustering and 
association rules. The Weka implementation of the 
tree induction algorithm J48 was applied to simu-
lated data and used for deriving decision trees, with 
default settings.

For these simulation studies, the up-regulated 
genes were simulated with a fold-change sampled 
from the exponential distribution, with mean λ = 1. 
A random number of transcripts were sampled 
from each library, and for each pairwise compari-
son all methods were applied without any cutoff. 
The sampling and pairwise comparison was con-
ducted 20 times, each time randomly choosing 
genes as up-regulated, as well as setting their fold-
change to a random one selected from the expo-
nential distribution.

The results from the simulations, together with 
the recorded class, i.e. whether a gene was simu-
lated as up-regulated or normally expressed, were 
concatenated and prepared in a format which the 
Weka software could read. It was thereafter fed to 
the J48 program, using default values on the param-
eters and without any cross-validation. The whole 
procedure was repeated fi ve times for each distri-
bution, thus generating fi ve decision trees for each 
distribution.

Test rules
A range of simple rules were implemented in a 
PHP-script and tested on the simulated data. In 
these simulation studies, we also tested different 
combinations of sample sizes. The sample sizes 
were divided into three categories: small (2,000–
4,000 ESTs); medium (5,000–7,000 ESTs); and 
large (8,000–10,000 ESTs). A random number of 
transcripts were sampled within each range, using 
the mt_rand function in PHP.

All combinations of sample sizes from each 
library were tested, and for each combination the 
sampling was repeated three times. In addition, for 
each pairwise comparison different genes were 
simulated as differentially expressed up-regulated, 
as well as their fold-changes. The rules were 
applied to each pairwise comparison and the results 

from each rule tested were plotted in a boxplot 
using the statistical language R.

EST analysis and gene identifi cation
EST sequences were downloaded from dbEST, 
using the following search phrases: ‘RAFL4’, 
‘RAFL7’, ‘RAFL18’ and ‘Arabidopsis AND 
aboveground organs’, which relate to the two 
cold-stress sets, the subtracted cold-stress set 
and the control set used, with UniGene Lib. IDs 
10438, 10441, 10433, and 5335, respectively. The 
sequences from all sets were concatenated and the 
on-line tool EGassembler (Masoudi-Nejad et al. 
2006) was used for EST analysis, with default 
settings. Identifi cation of expressed genes was 
done by a tBlastx search, using an E � 10−10, 
against the TAIR6 Genome Release of Arabidopsis 
gene sequences.
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Supplementary Materials

Figure S1. ROC curves for an up-regulation of either 2-fold (fi gures on the left) or 10-fold changes (fi gures on the right). Solid and dashed 
lines indicate 2,000 and 10,000 sampled ESTs, respectively. In a-b) the transcript abundance followed a Gamma distribution and in c-d) a 
Poisson distribution was used. Black: difference in relative frequency, red: χ2, green: AC and violet: Fone, blue: Ftwo.
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Figure S2. Shows the percentage true positives detected by the different statistical methods versus the number of detected genes. Here, 
the transcript abundance followed a Gamma distribution and the size of the EST sets differed in the treatment and control set. Black: Diff, 
green: AC, violet: Fone, blue: Ftwo, red: χ2. The circles correspond to different cutoffs (see Table).
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Figure S3. Shows the percentage true positives detected by the different statistical methods versus the number of detected genes. Here, 
the transcript abundance followed a Poisson distribution and the size of the EST sets differed in the treatment and control set. Black: Diff, 
green: AC, violet: Fone, blue: Ftwo, red: χ2. The circles correspond to different cutoffs (see Table).
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Figure S4. Excerpt from a fi le of input data to the induction algorithm J48 available in the Weka program (version).

Figure S5. Example of decision trees generated by the induction algorithm J48 available in the Weka program (version).
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