Abstract With insights gained through molecular profiling, cancer is recognized as a heterogeneous disease with distinct subtypes and outcomes that can be predicted by a limited number of biomarkers. Statistical methods such as supervised classification and machine learning identify distinguishing features associated with disease subtype but are not necessarily clear or interpretable on a biological level. Genes with bimodal transcript expression, however, may serve as excellent candidates for disease biomarkers with each mode of expression readily interpretable as a biological state. The recent article by Wang et al, entitled “The Bimodality Index: A Criterion for Discovering and Ranking Bimodal Signatures from Cancer Gene Expression Profiling Data,” provides a bimodality index for identifying and scoring transcript expression profiles as biomarker candidates with the benefit of having a direct relation to power and sample size. This represents an important step in candidate biomarker discovery that may help streamline the pipeline through validation and clinical application.
Discussion
No comments yet...Be the first to comment.
I had an excellent experience publishing our review article in Clinical Medicine Reviews. The managing editor was very helpful and the process was very timely and transparent.Professor Jonathan A. Bernstein (University of Cincinnati College of Medicine, Division of Immunology, Allergy Section, Cincinnati, OH, USA) What our authors say
Copyright © 2010 Libertas Academica Ltd (except open access articles and accompanying metadata and supplementary files.)