Publication Date: 14 Nov 2012
Type: Methodology
Journal: Evolutionary Bioinformatics
Citation: Evolutionary Bioinformatics 2012:8 611-622
doi: 10.4137/EBO.S10194
We propose a novel and simple approach to elucidate genomic patterns of divergence using principal component analysis (PCA). We applied this methodology to the metric space generated by M. musculus genome-wide SNPs. Distance profiles were computed between M. musculus and its closely related species, M. spretus, which was used as external reference. While the speciation dynamics were apparent in the first principal component, the within M. musculus differentiation dimensions gave rise to three minor components. We were unable to obtain a clear divergence signature discriminating laboratory strains, suggesting a stronger effect of genetic drift. These results were at odds with wild strains which exhibit defined deterministic signals of divergence. Finally, we were able to rank novel and previously known genes according to their likelihood to be under selective pressure. In conclusion, we posit PCA as a robust methodology to unravel diverging DNA regions without any a priori forcing.
PDF (2.60 MB PDF FORMAT)
RIS citation (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)
Supplementary Files 1 (1.96 MB XLS FORMAT)
BibTex citation (BIBDESK, LATEX)
PMC HTML
I found the submission management system for Evolutionary Bioinformatics to be one of the most user-friendly around. The peer review was very rigorous and constructive. Support staff were polite and furnished accurate information almost instantly. I strongly recommend other scientists to consider this journal.
All authors are surveyed after their articles are published. Authors are asked to rate their experience in a variety of areas, and their responses help us to monitor our performance. Presented here are their responses in some key areas. No 'poor' or 'very poor' responses were received; these are represented in the 'other' category.See Our Results
Copyright © 2014 Libertas Academica Ltd (except open access articles and accompanying metadata and supplementary files.)
Facebook Google+ Twitter
Pinterest Tumblr YouTube