Close
Help




JOURNAL

Cancer Informatics

sfDM: Open-Source Software for Temporal Analysis and Visualization of Brain Tumor Diffusion MR Using Serial Functional Diffusion Mapping

Submit a Paper


Cancer Informatics 2015:Suppl. 2 1-9

Review

Published on 01 Feb 2015

DOI: 10.4137/CIN.S17293


Further metadata provided in PDF



Sign up for email alerts to receive notifications of new articles published in Cancer Informatics

Abstract

A major challenge in the diagnosis and treatment of brain tumors is tissue heterogeneity leading to mixed treatment response. Additionally, they are often difficult or at very high risk for biopsy, further hindering the clinical management process. To overcome this, novel advanced imaging methods are increasingly being adapted clinically to identify useful noninvasive biomarkers capable of disease stage characterization and treatment response prediction. One promising technique is called functional diffusion mapping (fDM), which uses diffusion-weighted imaging (DWI) to generate parametric maps between two imaging time points in order to identify significant voxel-wise changes in water diffusion within the tumor tissue. Here we introduce serial functional diffusion mapping (sfDM), an extension of existing fDM methods, to analyze the entire tumor diffusion profile along the temporal course of the disease. sfDM provides the tools necessary to analyze a tumor data set in the context of spatiotemporal parametric mapping: the image registration pipeline, biomarker extraction, and visualization tools. We present the general workflow of the pipeline, along with a typical use case for the software. sfDM is written in Python and is freely available as an open-source package under the Berkley Software Distribution (BSD) license to promote transparency and reproducibility.



Downloads

PDF  (3.28 MB PDF FORMAT)

RIS citation   (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)

BibTex citation   (BIBDESK, LATEX)

XML

PMC HTML


Sharing


What Your Colleagues Say About Cancer Informatics
testimonial_image
Compared with other journals we considered for publishing, Cancer Informatics provided extremely rapid but quality turnaround from draft submission to a flawlessly typeset final publication.  Moreover, sharing the article is now as easy as sharing a link with no subscriptions required, and additional code and data files are equally accessible, supporting reproducible research.  Because it has published many of our references we feel confident that our target readership must follow the journal.  This is further ...
Dr Seppo Karrila (Prince of Songkla University, Thailand)
More Testimonials

Quick Links


New article and journal news notification services
Email Alerts RSS Feeds
Facebook Google+ Twitter
Pinterest Tumblr YouTube