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Introduction
Aggressive brain tumors are challenging to accurately diag-
nose and treat in both pediatric and adult populations.1 They 
are often characterized by a high degree of spatiotemporal 
tissue heterogeneity, which may not be easily interpreted on 
conventional imaging including magnetic resonance imaging 
(MRI–T1 weighting, T2 weighting or FLAIR)2 and com-
puterized tomographic imaging. Further obstacles arise when 
tumors are present in regions where performing a biopsy is 
considered too high risk, particularly in brainstem tumors. 
Thus, the need for accurate quantification of noninvasive 

neuroimaging biomarkers is paramount. Diffusion-weighted 
imaging (DWI) has long been used as a qualitative supple-
ment to tumor diagnosis.3–5 DWI is an MR technique that 
allows us to indirectly observe the degree of water displace-
ment (Brownian motion) within the tissue by measuring the 
voxel-wise signal loss in the image following the application 
of an encoding gradient. This displacement can be quantita-
tively calculated as the apparent diffusion coefficient (ADC), 
measured in mm2/s.6

Quantitative DWI methods, however, have mainly been 
limited to region-of-interest (ROI)7–9 approaches analyzing 
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whole tumor diffusion. While more informative than qualitative 
observational methods, these do not solve the problem of tissue 
heterogeneity. Spatial variances between aggressive tumor 
growth, necrosis, and inflammation may be diagnostically sig-
nificant, but are averaged over the tumor volume in traditional 
methods.

These challenges have led to the development of many highly 
sophisticated advanced imaging analysis techniques. Apromis-
ing approach is functional diffusion mapping (fDM).10 fDM is 
a method of generating parametric maps from two coregistered 
diffusion images by calculating the voxel-wise change in ADC. 
This preserves the spatial information in the diffusion changes 
within the tumor tissue across these two time points. Existing 
fDM approaches have looked only at two imaging time points, 
often comparing pre- and postradiation effects.10,11 While these 
spatial analyses seem promising in improved outcome predic-
tion, they still provide an incomplete picture of the long-term 
tumor progression and treatment response, of particular impor-
tance in prolonged therapies such as tumor vaccines.12

Here, we introduce an extension of fDM called serial func-
tional diffusion mapping (sfDM). sfDM aims to analyze the 
entire diffusion profile of the tumor progression through the 
course of the disease. This allows for (1) spatiotemporal quan-
titation of the diffusion properties of a tumor given a particular 
therapy and (2) characterization of the natural progression of 
specific brain tumors. sfDM is capable of quantitative and quali-
tative analysis of serial tumor imaging. The goal of the software 
is to provide the tools necessary to analyze a tumor data set in the 
context of spatiotemporal parametric mapping: the image regis-
tration pipeline, biomarker extraction, and visualization tools. 
Figure1 outlines the general workflow when using sfDM.

The typical sfDM workflow takes as inputs the patient’s 
diffusion and reference images for each time point, along with a 
user-defined tumor ROI. The sfDM pipeline automatically per-
forms a series of image registrations and calculates parametric 
maps for every user-selected time point. These parametric maps 
are then used to generate a patient-specific fDM timeline.

An additional obstacle encountered in tumor research is 
the relative lack of transparency in the methods and algorithms 

employed by investigators. The use of closed-source, “in-house”–
developed or expensive commercial software creates a hurdle 
that impedes the reproducibility and validation of promising 
new methods by restricting their user base. sfDM is provided as 
an open-source package with the intention of not only transpar-
ently broadening its user base but also to more efficiently improve 
and optimize its functionality through community feedback and 
development. This approach is critical for the use of the sfDM 
technique to eventually be implemented and validated for the 
analysis of diffusion imaging data from multi-institutional 
Phase II and III brain tumor therapy studies.13 In addition, this 
approach will also help validate the sfDM technique as a poten-
tial “point-of-care” analysis tool to be used in the clinic and help 
with the day-to-day management of neuro-oncology patients.

oftware etails
The sfDM pipeline is described in detail below. It is designed 
as a series of image registrations to align every subject’s imag-
ing time point into a common, high-resolution 3D space to 
allow for voxel-wise comparison across time. The multiple 
registrations are necessary due to the low resolution of con-
ventionally acquired diffusion images. Beyond the created 
parametric maps, the pipeline outputs subject-specific diffu-
sion timelines and calculates several fDM statistics (outline 
below) for each pair of time points being compared.

sfDM is written in Python and relies on a backbone built 
with the open-source data-processing framework Nipype.14 
sfDM interfaces with several existing, commonly used neu-
roimage manipulation software packages and libraries includ-
ing FSL,15 AFNI,16 and NIPY,17 and introduces newly 
developed brain tumor–specific visualization tools. sfDM is 
compatible with Linux and OSX operating systems and can 
be run on Windows using a virtual machine.

Inputs. sfDM requires as input at least one high-
resolution structural image (T1- or T2-weighted) to serve 
as the spatial reference for the registration of each imaging 
time point (sfDM label: Struct Brain). As its name implies, 
this image must be brain extracted prior to running sfDM. 
Brain extraction is the removal of nonbrain tissue (including 
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Figure1. General sfDM workflow.
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skull, neck, and other image noise) from the image in order to 
provide a clean reference for subsequent registrations. A clean 
brain reference image is a pivotal point early in the processing 
pipeline and can be the source of misregistration if not done 
properly. We chose to exclude the reference brain extraction 
step from the pipeline in order to allow the user flexibility 
in choosing an adequate image without being constrained by 
built-in contrast or sequence-specific defaults. This also gives 
the opportunity for any manual corrections necessary in the 
generation of the Struct Brain. Conventionally, this image 
is from the earliest available time point, if possible, but can 
be arbitrarily chosen based on image quality and minimally 
observed mass effect. For each time point, we require as the 
starting set of images: (1) a reference image of medium (at 
most 3–4mm slice thickness) to high resolution (sfDM label: 
Time Point Ref ), (2) the diffusion-weighted image (sfDM 
label: DWI), and (3) the manually delineated tumor ROI 
(sfDM label: ROI) in diffusion or Time Point Ref space. An 
optional normal ROI can be supplied in order to calculate 
a patient-specific 95% confidence interval ADC change for 
each time point.

DWI is typically acquired at lower resolutions as a 
sacrifice to acquisition speed. Most modern protocols acquire 
a standard T2-weighted image with no diffusion gradient (the 
b0 image), followed by a set of images acquired using orthog-
onal diffusion directions. The calculated diffusion maps are 
created as the normalized difference in signal between the b0 
image and the averaged set of diffusion images (b1), with lower 
signal indicating increased diffusion. Therefore, ideally the 
b0 image is used for registration due to its higher signal and 
better tissue contrast, with each resulting registration matrix 
applied to the ADC image. The b0 image, however, is not 
always consistently available in the same space as the derived 
ADC, particularly when analyzing retrospective or multisite 
data. Because of this, sfDM gives the option of directly using 
the available ADC image for the first registration step, in spite 
of its lower signal-to-noise ratio.

Image registration module. As a preprocessing step, 
the reference and diffusion images are brain extracted using 
FSL’s Brain Extraction Tool using robust brain center estima-
tion and a low fractional intensity threshold. Figure2shows 
a typical workflow using default parameters, outlining the 

Figure2. Image registration pipeline.
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image registration steps performed by sfDM. This workflow 
is generated for each subject, outlining the specific options 
and parameters chosen by the user. To prevent gross misalign-
ments, we first register the low-resolution diffusion image to 
the higher resolution time point reference image using a rigid-
body linear registration. The time point reference image is then 
used as the input for registration to the high-resolution subject 
reference, with registration parameters applied to the diffusion 
and tumor ROI. The linear registration of each time point ref-
erence to subject reference space occurs in two steps: first, an 
affine registration using FSL’s linear registration tool, followed 
by a fine registration with fast Fourier transform (FFT) inter-
polation with AFNI’s 3dVolReg tool. An additional step fol-
lowing the linear registrations is to use the brain-extracted 
Struct Brain image as a mask to remove any nonbrain tissue or 
artifact from the now linearly registered ADC maps.

The final registration node is a linear registration with 
a Hellinger distance metric (using AFNI) as default. sfDM 
also gives the option of using a nonlinear transformation 
using FSL’s nonlinear registration tool (FNIRT), which may 
be beneficial in the case of evident mass effect. As FNIRT is 
dependent on image intensities for registrations, only the reg-
istered ADC maps are used in this step to prevent errors due 
to any contrast inconsistencies in the Time Point Ref images. 
By default, the first time point is chosen as the reference space, 
but users may choose any available time point.

In a properly set up environment, sfDM can take advan-
tage of Nipype’s built-in parallel-processing interface using 
Grid Engine18 to run each time point’s registration in parallel 
to reduce the processing time. This is of course dependent on 
the number of processing cores and memory available.

Image registration nodes automatically performed by the 
sfDM pipeline. Graph shows all the default image parameters 
for a typical run of sfDM. The graph is subdivided into Reg 
(linear registration) and Warp (modular nonlinear registra-
tion) phases to allow for modular flexibility in registration 
algorithms determined by the user. Each node is a processing 
step in the pipeline, with the used image-processing pipeline 

in parenthesis. A subject-specific graph outlining all user 
options is generated for every subject as a standard output.

sfM generation. Functional diffusion maps are gener-
ated by calculating the voxel-wise difference between pairs of 
registered time points. The user must specify which time points 
to use to generate the fDMs for (see sfDM Usage). For ongoing 
studies, sfDM, the incremental addition of new time points to 
an existing data set, only requires the additional registration to 
the common space, followed by the recalculation of difference 
maps and voxel weighting for all time points.

utputs. In addition to the calculated fDMs, the pipeline 
outputs three-plane slice images at a user-defined coordinate, 
such as the center of the tumor or any other ROI, as well as 
scatter plot of voxel intensity changes (Fig.3) for every gen-
erated map. Currently, the default threshold for a signifi-
cant change in ADC is 0.4mm2/s, as empirically derived by 
Ellingson etal.19 However, future development will include 
the option of calculating patient-specific values by using an 
ROI of normal tissue at each time point.

Optionally, sfDM will generate a subject-specific fDM 
timeline (Fig.4). The fDM timeline provides a comprehen-
sive view of the tumor progression from baseline through the 
subsequent time points.

Table1 lists the metrics that are calculated for each map 
generated. Previous fDM studies have proposed multiple 
approaches for the calculation of fDM metrics. When compar-
ing pre- and postradiation images, for example, including only 
voxels classified as tumor tissue at both time points (AND opera-
tion) was shown to have superior predictive power.11 Other stud-
ies suggest including any tissue classified as tumor in either time 
points (OR operation).20 sfDM generates fractional increase in 
ADC (fiADC), fractional decrease in ADC (fdADC), and the 
ratio of fiADC/(fdADC+0.01) (fDM Ratio – the addition of 
0.01 to the denominator avoids a potential division by 0) using 
both approaches. Additionally, sfDM generates a weighted 
metric, where each voxel’s contribution to the extracted metric is 
weighted by the proportion of time points in which the voxel is 
classified as tumor (ie, a voxel present in all time points is given 
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a weight of 1, whereas a voxel only present in 10% of time points 
is given a weight of 0.1). This novel approach presents a com-
promise between excluding potentially explanatory voxels from 
the metric extraction (AND function) and inevitably including 
healthy tissue in the image subtraction, which may obfuscate 
desired within-tumor ADC changes (OR function).

sfM usage. sfDM is run using a graphical user inter-
face (Fig. 5). The user must specify the path of each input, 
along with the days after each scan from the first available 
imaging time point (referenced as baseline). Finally, the user 
supplies the coordinates of the ROI to be used for image gen-
eration (in structural reference space), along with the option to 
include a treatment marker to signal the start of a treatment. 
This is only used in the fDM timeline image generation. The 
selected image location and options are conveniently saved in 

JavaScript Object Notation format to allow easy recall and 
record keeping. The processing modules are then run sequen-
tially by using the buttons on the right-hand side, allowing the 
user to perform a data check upon each module completion.

Figure6shows the graphical user interface for generating 
fDM timelines. This step is performed following registration 
and allows the user to select the time point pairs to be used 
in fDM generation. The timeline generation takes as input a 
“Serial” list, which consists of sequential parametric maps, and 
a “Baseline” list, which consists of subsequent time points com-
pared to a specific time point of interest. These, however, are 
only by convention and may be freely modified by the user.

esting. To test for potential variation in the output as 
a result of different registration methods, we ran diffusion-
weighted images from a newly diagnosed pediatric brainstem 

Figure4. ample patient timeline. 
Notes: sfDM generates an fDM timeline allowing comprehensive visualization of the entire tumor progression through the course of treatment. Left image 
shows weighted tumor volume. Spacing between fDM’s is proportional to elapsed time.

Table1. sfD output metrics.

M D Ah

Time point specific ean DC Mean ADC at specific time point ime Point I

umor Volume Volume in Reference space (mm3 and voxels)

fDM specific mx_fiADC fractional increase in DC Maximum ROI (OR)

mx_fdADC fractional decrease in DC

mx_fdm Ratio mx_fiADC/(mx_fdADC+0.01)

mn_fiADC fractional increase in DC inimum I 
(D)mn_fdADC fractional decrease in DC

mn_fdm Ratio mn_fiADC/(mn_fdADC+0.01)

wt_fiADC fractional increase in DC Weighted I ()

wt_fdADC fractional decrease in DC

wt_fdm Ratio wt_fiADC/(wt_fdADC+0.01)

Notes: Maximum ROI approach uses all voxels classified as tumor over any time point used in the analysis (OR operation). Minimum ROI approach uses only tissue 
classified as tumor in all time points (AND operation). Weighted ROI weighs each voxel’s contribution to the metric by the proportion of time points in which it is 
classified as tumor.
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glioma patient enrolled in a Phase I tumor vaccine trial at our 
institution21 through our software using various settings. We 
ran five time points starting with the postradiation scan as 
baseline, using three registration methods: linear registra-
tion using b0 as initial source, linear registration using ADC 
as initial source, and nonlinear registration using b0 as ini-
tial source. All tumor ROIs were manually drawn using 
FSLView, and all additional parameters were set as default 

(see software documentation for full list of parameters at 
https://pypi.python.org/pypi/sfDM/). The patient was treated 
with concurrent radiation and chemotherapy prior to the start 
of vaccine, and the baseline scan was chosen as the time point 
at initial vaccine dose.

Additionally, we tested the nonlinear registration on a 
pediatric subject with a supratentorial mass that demonstrated 
a large calcification with mass effect distorting the adjacent 

Figure5. Graphical user interface for sfD.

Figure6. imeline generation Graphical User Interface (GUI). 
Notes: Example of user-defined time points that are used to generate subsequent fDMs and patient timeline.
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left lateral ventricle, which later subsided. The large tissue 
distortion and proximity to the ventricle can be a challenge 
to image registration. We chose the scan prior to the observed 
calcification as the baseline and ran the pipeline with the 
default parameters using the nonlinear registration option.

esults
The provided defaults performed generally well with the data 
set used. However, using only ADC maps for initial regis-
tration required some manual removal of noise from the ini-
tial image on two of the five time points. Figure7shows the 
comparison between fDMs using three different registration 
methods at two different time points compared to baseline. As 
previously observed by Ellingson etal.22, nonlinear registration 

shows a decrease in the volume of tissue classified as signifi-
cantly different (Fig.8). While a small difference is observed 
between the linear registration methods, particularly in the 
fdADC, the overall trend is consistent. Finally, the nonlinear 
registration on the subject presenting with a calcification and 
mass effect was successful in spite of the large tissue distor-
tion and intensity variation (Fig.9). It should be noted that 
the diagnostic utility of a voxel-wise comparison between such 
large tissue distortion needs to be validated.

Image registration required the longest amount of process-
ing time, generally estimated at 20–30minutes per image time 
point when using a linear pipeline approach (ie, no parallel pro-
cessing). The final nonlinear registration option requires an addi-
tional 20minutes per time point. Parallelizing the registrations 
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is able to significantly reduce processing time. Care must be 
taken with the number of cores required, however, as this creates 
a bottleneck in memory with each parallel registration utilizing 
roughly 300MB of RAM. All subsequent steps required less 
than 10minutes per patient.

iscussion
When applied to fDMs, nonlinear registration algorithms 
have been previously shown to improve image registration 
and outcome prediction. However, care must be taken with 
assumptions made about corresponding tissue mapping across 
time points when doing so.22 When analyzing patient cohorts, 
a consistent registration method should be enforced whenever 
possible. Even though the observed registration methods 
showed similar trends, the subtle difference in extracted met-
rics could become a confounding factor.

sfDM is a promising tool for the generation of serial para-
metric maps. While the test cases we presented were pediatric 
brain tumors, sfDM can easily be applied to adult populations. 
Additionally, this approach can be extended to include multimodal 
quantitative imaging data beyond DWI including diffusion ten-
sor MRI and also perfusion MR (which included permeability 
MR imaging and arterial spin labeling).23 Conveniently, sfDM 
provides the direct ADC registration method, which eliminates 
the need for a b0 image as the initial source of registration, which 
can be generalized to these additional imaging modalities.

This software does have limitations. Image registration 
is highly dependent on the quality of image acquisition, and 
careful quality control must be established in order to obtain 
meaningful results. Diffusion imaging can also suffer from sus-
ceptibility, gradient, and physiological artifacts, and ultimately, 
the results will only be as good as the images used to derive 
them. These artifacts can be particularly apparent in sensitive 
areas such as the brainstem, and we recommend a careful image 
acquisition protocol design in order to attenuate these prob-
lems in prospective studies (such as cardiac gating and proper 
shimming).

Furthermore, the presence of resection cavities, excessive 
mass effect, or tumor recurrence can cause the registrations to 
fail. To attenuate potential interpretation errors due to misreg-
istration, we have incorporated break points at the end of each 
module that require visual inspection of the pipeline outputs. 
This does require the user to have previous experience with 
image registration methods in order to accurately identify any 
existing problems. Future iterations of the software will aim to 
incorporate more robust and automated methods for detecting 
and alerting users of any errors. This will have the added ben-
efit of expanding the potential user base to include researchers 
and clinicians who may not be as familiar with the underlying 
methodology, with the goal of developing it into a true “point-
of-care” tool. Finally, fDM is a useful and promising technique, 
but it is also very context-specific and requires clinical valida-
tion across several populations. Interpretation is highly depen-
dent on tumor type, treatment, and patient population.24

This software is still young, and future work will be aimed 
at improving usability from user feedback. Additional features 
will include the ability to differentially weigh tissue types such 
as necrosis or contrast enhancement in order to increase fDM 
sensitivity, as well as allowing users to more easily alter patient-
specific parameters directly from the graphical user interface.

Availability
sfDM is available for download from https://pypi.python.
org/pypi/sfDM/with documentation and installation instruc-
tions. The latest source code can be found at http://github.
com/PIRCImagingTools/sfDM. sfDM is distributed under 
the BSD license, which allows anyone to freely use, distribute, 
and modify the source code.

onclusion
We have introduced sfDM: a new open-source package capable 
of generating serial functional diffusion maps and extracting 
meaningful tumor diffusion-weighted MR biomarkers. sfDM 
is an efficient way to standardize and process serial functional 
diffusion maps in large cohorts, emphasizing transparency 
and reproducibility.

Abbreviations
  DWI: Diffusion Weighted Imaging
  ROI: Region of Interest
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  fDM: functional Diffusion Mapping
  sfDM: serial functional Diffusion Mapping
  ADC: Apparent Diffusion Coefficient
  fiADC: fractional increase in ADC
  fdADC: fractional decrease in ADC
  fdm Ratio: ratio of fiADC/fdADC
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