Close
Help
Need Help?



On the Number of Close-to-Optimal Feature Sets

Submit a Paper


Libertas Press Analytics


1135 Article Views

Publication Date: 16 Feb 2007

Journal: Cancer Informatics 2006:2 189-196

CI
journal

275,719 Article Views

2,621,666 Libertas Article Views

More Statistics

Abstract Edward R. Dougherty1,2 and Marcel Brun2

1Department of Electrical and Computer Engineering, Texas A & M University, College Station, TX. 2Computational Biology Division, Translational Genomics Research Institute, Phoenix, AZ.

Abstract: The issue of wide feature-set variability has recently been raised in the context of expression-based classification using microarray data. This paper addresses this concern by demonstrating the natural manner in which many feature sets of a certain size chosen from a large collection of potential features can be so close to being optimal that they are statistically indistinguishable. Feature-set optimality is inherently related to sample size because it only arises on account of the tendency for diminished classifier accuracy as the number of features grows too large for satisfactory design from the sample data. The paper considers optimal feature sets in the framework of a model in which the features are grouped in such a way that intra-group correlation is substantial whereas inter-group correlation is minimal, the intent being to model the situation in which there are groups of highly correlated co-regulated genes and there is little correlation between the co-regulated groups. This is accomplished by using a block model for the covariance matrix that reflects these conditions. Focusing on linear discriminant analysis, we demonstrate how these assumptions can lead to very large numbers of closeto-optimal feature sets.


Post a Comment

x close

Discussion Add A Comment
No comments yet...Be the first to comment.


share on

Our Service Promise

  • Prompt Processing (Average 3 Weeks)
  • Fair & Constructive Peer Review
  • Professional Author Service
  • High Visibility
  • High Readership
  • What Our Authors Say

Quick Links

Follow Us We make it easy to find new research papers. RSS Feeds Email Alerts Twitter

BROWSE CATEGORIES
Our Testimonials
I had an excellent experience publishing our review article in Clinical Medicine Reviews.  The managing editor was very helpful and the process was very timely and transparent.
Professor Jonathan A. Bernstein (University of Cincinnati College of Medicine, Division of Immunology, Allergy Section, Cincinnati, OH, USA) What our authors say