Close
Help




JOURNAL

Cancer Informatics

Bayesian Hierarchical Models for Protein Networks in Single-Cell Mass Cytometry

Submit a Paper


Cancer Informatics 2014:Suppl. 4 79-89

Review

Published on 10 Dec 2014

DOI: 10.4137/CIN.S13984


Further metadata provided in PDF



Sign up for email alerts to receive notifications of new articles published in Cancer Informatics

Abstract

We propose a class of hierarchical models to investigate the protein functional network of cellular markers. We consider a novel data set from single-cell proteomics. The data are generated from single-cell mass cytometry experiments, in which protein expression is measured within an individual cell for multiple markers. Tens of thousands of cells are measured serving as biological replicates. Applying the Bayesian models, we report protein functional networks under different experimental conditions and the differences between the networks, ie, differential networks. We also present the differential network in a novel fashion that allows direct observation of the links between the experimental agent and its putative targeted proteins based on posterior inference. Our method serves as a powerful tool for studying molecular interactions at cellular level.



Downloads

PDF  (776.02 KB PDF FORMAT)

RIS citation   (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)

BibTex citation   (BIBDESK, LATEX)

XML

PMC HTML


Sharing


What Your Colleagues Say About Cancer Informatics
Publishing in Cancer Informatics was the fastest publication I have ever experienced and has received the highest viewing rate.  So it is a great place to publish your very latest research.
Dr Yue Zhang (Boston, MA, USA)
More Testimonials

Quick Links


New article and journal news notification services
Email Alerts RSS Feeds
Facebook Google+ Twitter
Pinterest Tumblr YouTube