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Introduction
Proteins and their functional interactions play a fundamental 
role in many biological processes. Measuring and analyzing 
protein expression is critical to assess their role in cellular 
functions and in understanding the pathology of diseases 
like cancer.

Some early attempts to predict protein–protein inter-
actions (PPIs) based themselves on genomic analyses. For 
example, it was observed that conserved proximity of two 
coding genes was associated with greater likelihood of protein 
interaction between the coded proteins. Similarly, phyloge-
netic association of protein pairs was shown to predict func-
tional linkage. That is, the co-occurrence of a protein pair 
in many different species suggested that they belong to the 
complex/pathway.1 Protein fusion events provided yet another 

evidence of interaction. Marcotte et al.2 showed that if two 
proteins are sometimes seen in some species fused into one 
contiguous protein, then these are very likely related in func-
tion and, therefore, also more likely to interact.

These methods had the advantage that they only required 
the simple analysis of a large number of genomes, and they 
modeled functional association instead of direct protein 
associations. A disadvantage was that these methods are not 
very effective in eukaryotic species because they have a more 
complex genome structure. To complement the genomics 
approach, structure-based prediction of PPIs became popular. 
This was made feasible with more complexes being revealed 
from high-throughput experiments. These methods assume 
that similar sequences have a similar fold and that domains 
with a similar fold interact through the same surface.3 They 
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typically incorporate knowledge on binding specificities.4 
For example, Shi et al.5 modeled PPIs across species using 
the statistical distribution of free energy – the biochemical 
parameter that determines interaction strength. Berg et al.6  
constructed a model of evolutionary networks, using the 
fact that protein–protein binding depended on concentra-
tions, mutations, and gene duplications. Their proposed “link 
dynamics” equations mathematically described how the net-
work connectivities rapidly declined among proteins encoded 
by duplicate genes. Structure-based methods though useful 
for in vitro assays, however, are not sufficient to determine 
the nature of protein interactions inside the living cell. What 
determines the latter is a combination of factors, such as 
expression levels, localization, complex formation (ie, scaf-
folding), post-translation modifications, splicing forms, and 
association with small compounds.

It is now a growing consensus that this problem of 
inferring protein interactions can be tackled only by using 
integrative probabilistic approaches that (1) weight all dif-
ferent information sources and (2) use the graphs/networks 
as the intrinsic model parameters. Graphical representa-
tion of protein networks was first introduced in Jeong et al.7 
Exploiting extraneous information (primarily for group-
ing genes) emerged via Bayesian frameworks described in 
Besag.14 This strategy was extended successfully to construct 
the first probabilistic model for the human protein interac-
tome in Rhodes et al.8 It used genome-wide gene expression 
data and functional annotation data to predict nearly 40,000 
PPIs in humans. This result, based on a purely computational 
approach, was able to replicate the experimental findings in 
model organisms. The method, applied to cancer genomics 
data, identified several interaction subnetworks activated in 
cancer. Currently, the most existing approaches to modeling 
protein signaling systems are relying on stochastic network 
methods.9–11

Motivated by the preliminary success of Bayesian 
approaches in decoding the human interactome, we develop 
and apply an integrative Bayesian graphical for functional 
marker interaction in liver cells. In contrast to previous sta-
tistical approaches, our proposed Bayesian graphical models 
provide a formal interpretation of associations as conditional 
dependence between markers.12 Apart from that, the approach 
has several additional advantages. For example, it allows for 
combining disparate sources of data, eg, different marker dis-
tributions and stimulation, borrowing of strength through 
hierarchical priors, and modeling different distributions by 
efficient use of latent variables.

To explore the marginal and interaction features, we pro-
posed two variations of the hierarchical network approach. In 
the first one, we estimated a pair of networks, each represent-
ing a set of cells under a specific treatment condition (pre- vs. 
post-treatment). The model borrowed strengths across two 
conditions through hierarchical priors. Usually, in biological 
pathways, there is a fair degree of commonality between 

two networks pre- and post-treatment by a pharmaceutical 
agent. The stimulating agent perturbs the network, but does 
not drastically alter the old topology. The common features 
between the two networks serve as the basis of sharing infor-
mation and strengthening the overall inference. For the sec-
ond analysis, we employed a single graphical model to combine 
analysis for the stimulated and unstimulated conditions. This 
analysis produced a single graph containing 19 nodes, 18 of 
which represented the 18 functional markers, while the 19th 
node represented the experimental condition (pre- or post-
treatment). The presence of an edge from the 19th node to 
a functional marker implied that stimulation significantly 
changed the marginal distribution of the marker. The second 
approach allows for a user-friendly visualization of the dif-
ferential networks. An important feature of both approaches 
is the inclusion of a generalized sampling model for the pro-
tein expressions. We assumed that the association between 
protein measurements occurred through a set of latent indi-
cators e denoting their latent activation status. Our approach 
returned random samples from the joint posterior distribution 
of the networks.

The rest of the article is organized as follows. In Section 2,  
we describe the graphical models for joint modeling and the 
related posterior inference scheme. Section 3 describes some 
simulation experiments to validate the proposed graphi-
cal model. We describe the specific data and the experi-
ment in Section 4. Next, we illustrate the application of our 
method in Section 4.1 with an application to Mass Cytom-
etry (CyTOF) data for monocytes, a cell type inferred by Qiu 
et al.13 We conclude with a discussion of our approach in  
Section 5.

Network Models
Our analysis is centered around a hierarchical Bayesian 
approach for network inference based on CyTOF data. Treat-
ing each cell as an independent and random sample from the 
cellular population, we have a large sample (tens of thousands 
of cells) for precise network inference. Also, measurements on 
individual cells mitigate potential contamination caused by 
experimental factors for sample-based measurements. We will 
use i and j to denote proteins, t to denote cells, and k to index 
networks.

We begin with the simple assumption that the depen-
dence in each of two experimental conditions is characterized 
by a distinct network. Our goal is to estimate both networks. 
We denote the two unknown networks by G1 and G2 for 
the pre- and post-treatment conditions, respectively. Let Gij

k 
denote the edge between the nodes i and j in the kth network. 
The proposed model for the data is now constructed as a hier-
archical model, starting with a joint prior distribution on G1 
and G2, p(G1, G2), defined as

 p G Gij ij( )1 2= = π  (2.1)

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Bayesian network for single-cell proteomics

81CanCer InformatICs 2014:13(s4)

	 π	∼	Uniform(0,1) (2.2)

Using a common π formalizes the borrowing of strength 
between the two networks. It allows us to estimate a global 
similarity parameter. When the data indicates that the net-
works have common patterns, the graphs become closer toward 
each other. This is a classical analog of shrinkage effects in 
univariate analysis, now applied to graphical structures. The 
remaining layers of the hierarchical model are introduced one 
at a time. For reference, we state the overall model structure

 p(G1,G2)p(e|G1,G2)p(y|e) (2.3)

The first factor is the prior on G1 and G2. The second layer 
of the model is a prior on each latent binary indicator eit for 
the presence of protein i in cell t. The third, and last layer of 
the hierarchical model, is a sampling model for the observed 
protein expression conditional on the latent indicators.

Priors on individual graphs. Each of the two graphs can 
be expressed as (V, E), where V is a set of vertices and E is a set 
of undirected edges. For future reference, we define a clique as a 
set of vertices of which all pairs in the set are connected through 
edges, ie, {i1, i2} ∈ E for all i1, i2 in the set. The vertices corre-
spond to the proteins, and the absence or presence of edges in the 
graph denotes the conditional independence (CI)/dependence 
between them. “CI” between two nodes i and j implies that the 
random variables i and j are conditionally independent of the 
remaining variables (nodes). This property can also be restated 
in terms of the Markov property – each variable is conditionally 
independent, given its edge neighbors. Here, we emphasize an 
important distinction between CI and the notions of marginal 
independence where we average out over the other variables. For 
example, consider a protein i that simultaneously affects proteins 
j and k. Although, marginally, the three variables would appear 
associated, the CI structure (encoded by the graph) would lack 
an edge between j and k. We follow Mitra et al.12 to construct 
priors on individual graphs. Details are omitted.

Prior models for indicators. Conditioned on the graphs, 
we model the joint distribution of latent indicators e through 
an autologistic model.14 For notational convenience, we first 
describe the conditional distribution given any single network.

Given this network and a set of coefficients β, the model 
can be expressed as 

1 1

0( | , ) ( | , )

exp
m

i i ij i j ijk i j k m m
i i j i j k

p e G p G

e e e e e e e e

β β

β β β β
< < <

=

  × + + + + 
  
∑ ∑ ∑ …

… …

  (2.4)

Tentatively, we drop sample index t for ease of exposition. 
Also, we impose the restriction that an interaction coefficient 
βi ik1
…

 is zero if and only if vertices i1,…,ik do not form a clique 
in the graph G. Henceforth, we use β to denote the vector of 

all non-zero coefficients βi ik1…
 For our application, we assume 

that all interactions of order three and higher are zero, thus 
ignoring any cliques of size greater than three. This brings 
up a nice conditional interpretation. Conditional on the other 
variables, the distribution of a node i turns out to be simply a 
logistic regression with two-way interaction coefficients. This 
is a desirable property of the joint distribution and is hugely 
exploited in the Gibbs sampling of e. It can also be proved that 
the traditional log odds ratio for eit and ejt is βij conditional on 
all other parameters. The sign of βij determines how the acti-
vation of one protein is enhanced or diminished by those with 
which it shares an edge. To improve Markov chain Monte 
Carlo (MCMC) mixing, we employ a centered parametriza-
tion of the above autologistic model (2.4). Letting vi = exp(βi)/
{l + exp(βi)}, we can restate (2.4) as

 1

1

0

β
β β

β
−

−

=
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 (2.5)

Following this generic model, we finally write out the con-
ditional distribution of a binary vector et = (eit, i = 1,…,m) for 
cell t.

This same structure, described for a single network, can 
now be allowed to vary with the indicator of the covariate 
Zt = k, k = 0, 1, for cell t. The dependence is borne through the 
graphical structure Gk and the corresponding parameter set βk

1 2 0β β

β β
<

= = ⋅

  + − − 
  
∑ ∑

( | , , , ) ( | , ) exp

( )( )

t k t k k

m

ik it ijk it ik jt jk
i i j

p e G G Z k p G

e e v e v  (2.6)

sampling model for [yit]. We complete the model con-
struction with a sampling distribution for the observed counts 
yit. Figure 1 shows the empirical probability distributions of 
the counts for the functional marker 166.IkBalpha under the 
unstimulated condition.

Motivated by the bell shape of the empirical distribution, 
and the presence of the long tail to the right, we model the data 
as a mixture of two Gaussian distributions. The latent states for 
the mixtures are provided by binary indicators eit. The para-
meters of the Gaussian mixture are dependent both on the 
functional marker i and the treatment condition k = 0, 1, ie,

 

2
1 1

2
2 2

0

1

( , ) if
( | , )

( , ) if
i i it

it it t
i i it

N e
p y e Z k

N e

µ σ

µ σ

== ∝  =
 (2.7)

We will use θ = (µ1ki, µ2ki, σ1ki, σ2ki, i = 1,…,m, k = 0, 1)  
to denote the complete parameter vector for the sampling model.

The entire model building process can be summarized as 
a flowchart. At the very top lies the pair of graphs each hav-
ing has a CI structure within itself. The pair is connected by 
the inclusion probability π plays a very important role in the 
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differential graph model. Conditioned on π, the graph edges 
are independent. However, marginally, the independence gets 
lost. At the bottom is the data matrix yk. Just above the data 
matrix, we have a layer of latent indicators ek.

Implementation: posterior inference scheme. Large 
datasets require an efficient and tractable MCMC scheme 
to simultaneously search the graphical space and infer 
protein-specific parameters. The hierarchical structure of 
the model induces CI among different sets of variables. 
This makes the model most amenable to a Gibbs sampling 
scheme, which we implement for our simulations and data 
analysis. Note that for Gibbs sampling, we require only the 
full conditionals.

MCMC posterior simulation proceeds by iterating over 
the following transition probabilities: [θ  k | β  k, Gk, y k], [β k | θ  k, 
Gk, yk] for k = 1, 2, [π|G1, G2], [G2, β  2|θ  2, β  1 G1, π, y2], [G1, 
β  1|θ  1, θ  2, β  2, G2, π, y1]. Updating the parameters θ k of the 
sampling model is easy. Since we are modeling y|e as mix-
ture of Gaussians, we can find the full conditionals in a closed 
form. In fact, sampling them is equivalent to sampling the 
mean and variance parameters in a standard two-component 
mixture model.

Other than that, there is a scope of huge parallelization on 
two counts. First, the y’s are independent given the binary indi-
cators e’s. This means that we can update eit, i = 1,…,m, using

β θ

β β θ

− ∝

  + − − 
  

∑
: ~

( | , , , ) exp

( )( ) ( | , )

it it

i it ij it jt j
j j i

p e e Y

e e vi e v p y e

and repeat the same loop for each t = 1,…,n. This is just 
a fallout of the nice property of the autologistic model. (For 
this part, we have dropped the superscript k and used a gen-
eral e for notational convenience.) This is just a fallout of the 
nice property of the autologistic model. Moreover, since the 
et, t = 1,…,n, are conditionally independent given all other 
parameters and y, we can run the same conditional loops in 
parallel for all data points. This parallelization can scale up 
the computation considerably, especially when we have large 
number of observations. In our application, we update the 
binary matrices e1 and e2 in exactly the same way.

Also, note that the graphs are independent given π. This 
would allow us to distribute the bulk of the computation for 
p(G1|y…) and p(G2|y…) among parallel nodes. Only for sam-
pling π do we need a combined estimate of the edge similarities 
in the two networks. This updating of π allows the borrow-
ing of strength among the two networks. This sampling can 
be done by computing the following. Let m1 = ∑{i,j}∈V×Vδij and 
m0 = ∑{i,j}∈V×V (1 – δij) denote the number of mismatches and 
matches between edges of the two graphs G1 and G2. We have 

01 1π δ π π∝ −( | ) ( )mmp . We recognize this as the kernel of 
Beta(m1 + 1, m0 + 1). Note that sampling this inclusion probabil-
ity π plays a very important role in the differential graph model. 
Without the latter, there would be no borrowing of strength 
across the groups.

Sampling graphs and coefficients were relatively non-trivial 
because of the presence of normalizing constants in the auto- 
logistic density. For this, we employed a combination of impor-
tance sampling and Reversible jump Markov chain Monte Carlo 
(RJMCMC) as illustrated in Refs.12,15 In all, 16,000 MCMC 
simulations for a 400-sized data with seven nodes typically take  
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figure 1. Histogram of protein expression data. note that these are not raw expressions but processed data. the background mean effects are 
subtracted. this explains the negative values.
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22 minutes on the University of Texas at Austin computing 
cluster. The code is a combination of an R code and a set of C 
routines. The C routines are included to speed up the updating 
of Gs and βs.

After completing all MCMC simulations, the marginal 
posterior probability for an edge in the networks îjP  for each 
possible edge {i, j} in the graph was computed as

 
1

= ∈∑ˆ ({ , } )ijP I i j E
k

substituting the edge set E of the imputed graph for each 
iteration of the MCMC. To construct a summary graph, we 
thresholded posterior probabilities îjP c>  where the threshold 
c is chosen in order to achieve a posterior expected false dis-
covery rate (FDR). The posterior expected FDR for any given 
threshold c is calculated by

 

1

,

ˆ ˆ[( ) ( )]
FDR ˆ( )

ij ij ij
c

i j ij

P I P c

I P c

∑ − >
=

∑ >

We chose threshold c such that the corresponding FDRc is.01.
comparisons with other Markov random fields (MrF)s.  

Some commonly used examples of other MRF models are 
Gaussian graphical models (GGMs), which uses a multivari-
ate normal distribution to describe the joint distribution of the 
nodes. Using a GGM would be equivalent to removing the 
additional layer of e in our model. The non-zero entries of G 
would then correspond to the non-zero entries of the inverse 
covariance matrix of the Gaussian distribution. This would be 
a simpler and a more popular approach.16–19 However, as we 
just explained, it would misguide us about the form of actual 
dependence we are interested in.

With the abundance in methods for inferring individ-
ual GGMs, the concept of multiple GGMs has also gained 
ground. Danaher et al.20 and Guo et al.21 developed the idea 
under frequentist paradigm, where they aimed to estimate mul-
tiple-related GGMs from observations belonging to distinct 
classes. These methods borrowed strength across the classes 
through appropriate convex penalty functions where the pen-
alty was chosen to encourage similarity across the estimated 
precision matrices. Some other examples of joint graphical 
modeling using penalized likelihood appear in Refs.22–26. York 
et al.27 recently used lasso penalization and GGM assumptions 
to identify complex protein signaling patterns from reverse 
phase protein array data in 203 AML patients. However, these 
techniques require a lot of tuning with ad hoc penalization 
para meters. We compare our approach with these methods 
through a series of simulation experiments in Section 3. We 
further note that the MRFs described above through the prior 
model do not obey the Gaussian assumptions.

Recently, discrete MRFs for molecular pathways were 
used in Segal et al.28 for an integrated analysis on gene 

expression and protein interactions. Their framework forced 
each gene to belong to precisely one of several pathways. The 
pathway assignments played the role of latent k-nary random 
variables that corresponded to the nodes in MRF. Gene 
expression values are assumed to be conditionally indepen-
dent given the class. They implemented their method on two 
Saccharomyces cerevisiae gene expression datasets under various 
stress conditions. However, our approach is fundamentally dif-
ferent from theirs both in objective and inference. Since they 
used known protein interactions to predict gene assignment 
to pathway, they assumed that the edge structure of the MRF 
is already observed. In contrast to their simplifying assump-
tions, our approach assumes the node variables as well as the 
MRF structure to be completely unknown.

covariate-induced differential graphical model. As an 
alternative model, we include the treatment condition directly 
into the graphical model through a binary stimulus covariate 
Z, taking values in {0, 1} denoting the unstimulated and stim-
ulated experimental conditions, respectively. Generally, any 
graphical model for markers must depend on our underlying 
assumption on how the binary covariate Z changes the joint 
probability model. To represent this differential effect within 
the graphical model, we regressed the marginal effects of the 
proteins against the stimulation status. Instead of defining a 
joint prior on two networks, we now integrated the informa-
tion into a single network model by adding a new parameter 
βm+1 that measures the effect of the covariate. We must note 
that, unlike the other indicator variables, this variable is nei-
ther stochastic nor latent. It is treated as a covariate. The main 
effects are now dependent on the value that covariate z assumes 
at cell t. Specifically, keeping (2.6) unchanged we assume the 
intercepts follow a new configuration, given by

 β α βik i i m tI Z= + =+, { }1 1  (2.8)

where I{} is the indicator function, m denotes the number of 
proteins in the CyTOF data, and m + 1 is used to index the 
treatment condition as an additional “node.” Since Zt is binary, 
the main effects βik take two possible values depending on 
whether the tth cell is stimulated or not. When Zt = 1 or 0, ie, 
the cell t is stimulated or not, βik = αi + βi,m+1 or αi, respectively, 
with βi,m+1 describing the edge connecting the (m + 1)th node 
(or the stimulus) with the ith protein. This edge simply reflects 
the potential effect of stimulation on protein i. When βi,m+1 is 
non-zero, the stimulus is believed to have an effect on protein i. 
The differential graphical model could now be pictorially repre-
sented as a graph with an additional node. The node denotes the 
covariate Zt and is connected to node i if and only if βi,m+1 = 1. 
Since Zt is not a random variable, the edge connecting nodes 
m + 1 and i does not have the same interpretation as the edges 
between other proteins i and j. It simply indicates the presence 
of an effect of a fixed covariate – the stimulation status. The 
edges between proteins, on the other hand, represent the condi-
tional dependencies of a graphical model as described before.
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simulation
We set up a simulation experiment to validate the proposed 
model. For each simulated data set, we carried out inference 
under (1) the proposed model (differential graph model); (2) 
a model with two independent priors for G1 and G2, (inde-
pendent graph model); (3) joint graphical inference by Guo 
et al.21; (4) joint graphical inference by Danaher et al.20; and 
(5) independent graphical lasso. The primary objective of 
these experiments is to investigate whether the differential 
model provides any advantage over independent analyses and 
other joint graphical methods in detecting edges of the two 
networks. We fixed the number of observations for subgroup 
1 at 330 and subgroup 2 at 48.

The graph G1 was generated by setting up vertices for 
m = 7 nodes. For each pair of nodes {i, j}, we included an edge 
between them with probability π = 0.5. For each imputed edge 
{i, j}, we generated values of β ij

1  using a discrete uniform prior 
over three possible values, 1 2 4 2~ Unif ({log( ), log( ), log( )})ijβ − .  
Next, we used π to generate G2 from the conditional prior 
distribution p(G2|G1, π). In the simulation truth, we used sev-
eral choices of π. Values are indicated in the upcoming tables 
of results.

Conditioned on Gk, we generated latent binary indica-
tors eitk ∈ {0, 1} conditioned on Gk and β k from the autologis-
tic model. Using the imputed ek = {eitk}i,t, we then generated 
hypothetical data yk from the sampling model. The sampling 
model, described above, is a mixture of two Gaussian distri-
butions. In our setup, we generated the parameters as µ1ik = 
N(4, 0.2), µ2ik = N(1, 0.2), and σ1ik = σ2ik = 0.1. We generated 
20 hypothetical datasets under this assumed sampling model. 
We used the same model as the analysis model, ie, we evaluated 
posterior probabilities under this model. To generate enough 
variance in sample sizes across groups (as is observed in most 
of these experiments), we set the number of observations for 
subgroup 1 at 330 and subgroup 2 at 48.

After inference, we examined the ROC (receiver oper-
ating characteristic) curves obtained from each model. The 
ROC plots the sensitivity versus the false positive rate under 
different posterior probability thresholds for inferring edges 
in Gij

1  and Gij
2 . We specifically used the area under the ROC 

curve (AUC) as a summary of model performance. The curves 
were smoothed using kernel density estimates of the distri-
bution of δij  for both, true positives and true negatives. For 
more details, we refer the readers to Lloyd.29

For each dataset, we computed AUCs for all five methods: 
(1) our proposed differential Bayesian model, (2) independent 
Bayesian model, (3) joint lasso proposed by Guo et al.21 and (4) 
Danaher et al,20 and (5) independent graphical lasso. The fre-
quentist lasso methods (3)–(5) required specifying the glasso 
penalization parameter ρ, which we set to 0.03. (3)–(4) was 
executed using the glasso package and jgl in R, while (5) was 
executed with the help of a code obtained from Guo et al.21 
For each method, we recorded four measures of model per-
formance (1) AUC for estimating G1 (2) AUC for estimating 

G2 (3) AUC for estimating the difference graph and (4) the 
mean of (1) and (2). The fourth measure thus provides a com-
bined summary of how the model jointly estimates the pair of 
networks.

ROC for the frequentist methods was obtained by 
thresholding the values of inverse covariance matrix at dif-
ferent cutoff values. Each cutoff yielded a binary matrix of 
estimated differences, which was then used to compute the 
corresponding sensitivity and specificity. The average AUCs 
for all methods along with their standard errors are summa-
rized in Table l. We observe that the differential prior gains 
considerably over the independent prior in terms of combined 
accuracy and the estimation of G2. Figure 2 shows smoothed 
ROC curves under the differential and independent models 
for estimating both graphs, for a sample dataset.

We next varied the penalization parameters of the fre-
quentist methods and found that their performance was very 
sensitive to these values. Specifying an optimal value of A that 
works for specific situations remains a challenge. To have a fair 
comparison, one should however note that these approaches 
were never specifically intended for a comparison of edges in 
two graphs and are more focused on the shrinkage of graph 
coefficients.

Overall, the joint estimation of differential pathways 
in the differential model allows improved inference on dif-
ferences across the two graphs. The relative advantage over 
independent analyses decreases when sample sizes increase 
(simulations not shown). However, differential prior provided 
a substantial gain in AUC (and a significantly lower error rate) 
under unequal and lower sample sizes. Asymptotically, as both 
sample sizes increase and the data essentially reveal the true 
graphs, both models achieve an AUC of 100%.

Besides the good performance in simulation experi-
ments, the Bayesian paradigm offers several advantages. 
First, it would allow the inclusion of prior expert knowledge, 
when and if they are available. Second, we model the differ-
ential structure directly through latent graphs, rather than 
using features of an assumed sampling model. This makes 
the approach very flexible. For example, the current sampling 
could be replaced by any alternative sampling model without 
substantially changing the implementation of posterior simu-
lation. In fact, we repeated the same simulation experiment 

Table 1. Comparing differential prior model against independent 
priors and other frequentist alternatives under autologistic–Gaussian 
mixture sampling.

AUC PRoPoSEd  
ModEL

INd-BAYES gLASSo JgL gUo

Joint 0.81 0.76 0.77 0.78 0.67

Group 1 0.95 0.96 0.98 0.98 0.92

Group 2 0.91 0.80 0.77 0.80 0.72

Difference 0.72 0.73 0.76 0.77 0.62
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by generating data from a binary autologistic model without 
the mixture component. The results (not shown) are an evi-
dence of the robustness of our prior to different sampling 
model specifications. Finally, the Bayesian approach includes 
a full probabilistic description of uncertainties as the posterior 
distribution.

cytoF data and results
The last few years have seen rapid advances in biotechnology, 
enabling increasingly precise quantitative measurement of 
proteins in biological samples. A significant step in this direc-
tion was the advent of a single-cell mass cytometry platform 
called CyTOF.30 The platform was applied successfully to 
understand protein signaling patterns in human bone marrow 
cells. For experimental details, we refer the readers to Bendall 
et al.30 Briefly, the bone marrow cells were targeted by pro-
tein specific antibodies, coupled with stable transition element 
isotopes. The bound cells were sprayed as droplets onto high 
temperature argon plasma. The extreme plasma temperatures 
vaporized the cells and induced ionization of its constituent 
ions. The ions were then fed into a spectrometer where they 
were separated on the basis of their mass-to-charge ratios. 
Finally, the spectrometer detected ion signals proportional to 
the concentrations. This entire process led to the simultane-
ous measurement of 18 protein markers per individual cell. 
Based on the assumption that cells at different maturation 
stages exhibit unique surface marker combination, the mar-
ginal expression of the 13 surface markers were analyzed to 
identify 26 different hematologic cell types. This was achieved 
by SPADE - an efficient algorithm for agglomerative cluster-
ing.13 The analysis yielded a classification of immunological 
cell types based on a detailed analysis of the marginal protein 
expressions across different experimental conditions. Table 2 
lists the set of 18 markers that we analyzed.

The expression data for all markers and all cell types are 
available from the website http://reports.cytobank.org/l/vl. 

Note that these are all processed data. For pre-processing steps, 
we refer the readers to Bendall et al.30

Based on the network models described before, we report 
differential interactions among these markers for a specific cell 
type, monocytes under two conditions. The nodes in the graph 
denote the random variables (the 18 functional markers), and 
the edges imply statistical associations between pairs of nodes. 
The conditions are the presence/absence of a lipopolysaccha-
ride (LPS) agent.

Monocytes are a special category of cells produced in 
the bone marrow from monoblasts. They stay in the spleen, 
circulate in the bloodstream, and finally diffuse into tissues 
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figure 2. roC curves for a simulated data set. the green and black curves represent the operating characteristics of the differential graph model and the 
independent graph model, respectively.

Table 2. the list of 18 functional markers.

MARkERS

1 141.pPLCgamma2

2 150.pstat5

3 152.Ki67

4 154.psHP2

5 151.perK1.2

6 153.pmaPKaPK2

7 156.pZaP70.syk

8 159.pstat3

9 164.psLP.76

10 165.pnfkB

11 166.IkBalpha

12 168.pH3

13 169.pP38

14 171.pBtk.Itk

15 172.ps6

16 174.psrcfK

17 176.pCreB

18 175.pCrkL
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throughout the body, where they change into macrophages. 
Macrophages digest pathogens, infectious microbes, and 
cancer cells. They repair tissues and stimulate immune cells 
(eg, lymphocytes) to respond to pathogens. Monocytes play 
multiple influential roles in the immune system of all mam-
mals by replenishing macrophages under normal states. They 
also respond to inflammation signals by traveling to infection 
sites in the tissues and differentiating into macrophages. This 
choice of cell type was motivated by two reasons. First, mono-
cytes were among the mostly populated cell types. The num-
ber of stimulated cells and unstimulated monocyte cells in this 
CyTOF dataset are 25,889 and 33,929, respectively. Second, 
there is a specific biochemical relationship of monocytes to the 
stimulating agent LPS. Recent studies have shown how this 
stimulation is recognized by monocytes and affect the innate 
immune system. In fact, human monocytes are known to 
respond extensively to LPS stimulation by expressing numer-
ous inflammatory cytokine markers.31 However, the role of 
inter-protein-pathways in this marker activation had not been 
elucidated so far.

results. As an initial step, we performed some explor-
atory data analysis to assess the assumptions of our models. 
In particular, we empirically explored the changes in the 
marginal distribution of the proteins with respect to stimu-
lus for monocytes. We expected that if a protein’s intensity 
distribution changed significantly across stimulation status 
in monocytes, our covariate-induced model would capture 
that, by assigning an edge to connect the (m + 1)th node, or 
the stimulation, to that protein. This intuition has been veri-
fied. In Figure 3, we show the empirical comparisons for the 
m = 18 functional markers for monocyte cells under the two 
conditions (unstimulated vs. stimulation). In Figure 4(A) and 
(B), we present the posterior estimates of G1 and G2, under the 
differential network model in (2.6). In Figure 4(C), we present 
the 19-node graph for monocytes based on the covariate-
induced model (2.8). For all proteins connected to the stimulus 
node, the marker intensity distributions between the two con-
ditions have very different shapes. We make a special note of 
the subplot representing the marker 166.IkBalpha (node 11 in 
Table 2). In marked contrast to other plots, the unstimulated  
marker expression here has a distribution that is stochasti-
cally greater than that under stimulation. Our covariate- 
induced model captures this by a negative edge (colored pink) 
in Figure 4(C). This strongly affirms the findings in the exist-
ing literature, which suggests that LPS stimulation is related 
to the inhibition of IkBalpha expression in monocytes.32

Next, we applied the proposed joint network model and 
the covariate-induced model on stimulated and unstimulated 
monocyte cells. Figure 4 shows three estimated networks – 
two from the joint network model (2.6) and one from the 
covariate-induced model (2.8). The nodes, representing the 
functional markers, are indexed by integers from 1 to m = 18. 
The stimulus node is labeled by the integer m + 1 = 19. The 
marker indices correspond to the order in which they appear 

in Table 2. We use solid blue to denote the associations 
between the protein pairs and a different color coding for the 
edges connecting the stimulus node. The positive edges from 
the stimulus are colored green, while the negative ones are 
colored pink. Overall, the stimulated network is more densely 
connected than the unstimulated network. As expected, there 
was a perturbing effect of the stimulus, leading to small and 
significant differences in topology across two networks. At 
the same time, the unstimulated and stimulated networks 
shared a fair number of edges between them. 60% of the edges 
appearing in unstimulated network appear in the stimulated 
network as well. The markers 152.Ki67 and 175.pCrkL are 
unconnected to any other node in all three summary graphs. 
The protein pairs appearing in the networks provide poten-
tially interesting functional relationships that require future 
experimental validations. Notably, the model detects a pink 
edge from the stimulus node to the 11th marker. This for-
mally confirms the well-known inhibiting effect of LPS on 
166.IkBalpha in monocytes.

conclusion
The proliferation of experimental and computational meth-
ods to study PPIs has prompted comparative studies under 
different stimulation conditions, species, and assays. Interest-
ingly, it was demonstrated that interactions that were observed 
in more than one of the analyses were more likely to be true 
interactions. From these first efforts, emerged the idea that 
more meaningful information can be obtained from the com-
bination of different experimental and computational obser-
vations. Formally, this demands an integrated joint statistical 
model for studying interactions. We develop such an approach 
and apply it to study protein signaling patterns in human bone 
marrow cells.

These patterns were recently identified using a novel 
mass cytometry platform called CyTOF. Differential protein 
signaling across the hematopoietic continuum was observed 
and analyzed with the help of 18 functional markers. Apart 
from its novel data-generating potential, the technology has 
presented both a unique challenge and an excellent opportu-
nity to biostatisticians to efficiently model joint distributions 
of protein markers. It is an opportunity because single cells 
act as independent units of observation, allowing us to exploit 
the assumptions of a statistical model. In particular, the data 
are free from sample heterogeneity, which could strongly bias 
the results of network inference. It is a challenge because the 
protein marker distributions do not follow a conventional pat-
tern. Also, the space of interactions is larger and more complex 
than marginal protein distributions. The former is important 
to model because proteins do not function in isolation, but 
interact with one another and with other cellular entities. The 
interaction structure can itself change with biochemical per-
turbations in a complex manner.

We presented a hierarchical Bayesian formulation for 
joint estimation of protein signaling networks. This introduces 
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figure 3. Comparison of the empirical densities of the 18 functional markers pre- and post-stimulation. the post-stimulation distributions are shown by 
the red curve. the unstimulated condition is shown by the black curve. the distributions are for the markers in monocytes. In some of these plots, we see 
the red curve markedly shifted from the black curve. this implies the effect of stimulation on the marginal mean expression. Interestingly, those cell types 
that show this effect have edges joining the stimulation node in figure 4.
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figure 4. Posterior summaries for the monocyte networks. (A) and (B) show the unstimulated and stimulated networks, respectively, after implanting the 
joint graphical model. the edges denote presence of relationship between proteins. (C) is the combined network estimated from the covariate-induced 
model. the 19th node is the stimulation node. edges from this node to the protein node indicate the effect of stimulation on proteins.

a novel perspective to the field of Bayesian networks. Instead 
of tuning sparsity for a single high-dimensional graph, we 
now use priors to borrow strengths across multiple graphs. 
Posterior probabilities from this graphical procedure allowed 

us to simultaneously construct the relationship between the 
stimulating agent with the protein markers as well as the pro-
tein functional interactions. Our methodology is accompanied 
by a computationally efficient algorithm for full probabilistic 
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inference. The formulation is general and can be applied to 
a number of graphical models and other cell types.

Methodologically, this approach can have several natu-
ral and useful extensions. The “curse of dimensionality” could 
emerge when we start including more protein markers. To 
tackle this, informative priors could be used.12 Instead of 
assigning equal prior probability to all subgraphs, we might 
want our inference to be centered around a consensus net-
work obtained from expert knowledge or known databases. 
Another useful constraint could be that of sparsity. This can 
be achieved by placing a hyper prior p(ρi,j) = Beta(a, b) on the 
inclusion probability ρi.j of each edge. The hyper-parameters  
a, b could be tuned to induce the desired level of sparsity 
control. Note that both these modifications can be done at the 
level of the graphical priors, and would not affect the lower 
levels of the hierarchy.

In the context of informative priors, a potentially success-
ful extension would be the easy inclusion of structural infor-
mation. As mentioned before, much progress has been made in 
predicting PPIs on the basis of structures and homology mod-
eling. A Bayesian hierarchical model would be able to natu-
rally distribute the likelihood of protein interaction networks 
among several structural subnetworks through appropriate 
prior. Finally, the same approach could be adapted to borrow 
strength across multiple (more than two) protein networks. 
This would be highly relevant for comparative graph analysis 
between the interactomes of different species. In this way, it 
could strongly enrich the new field of comparative interacto-
mics,33 which would be the protein-pathway parallel to the 
well-established field of comparative genomics.

The present application focused on healthy bone marrow 
cells. However, this approach is generalizable to other types of 
biomolecular data as well. This would have significant impli-
cations for drug development. For example, the results from 
our model identify respondent biomarkers in monocytes and 
specifically address the molecular basis of LPS recognition by 
markers. This could directly help in identifying novel thera-
peutic approaches. Based on such findings, we see considerable 
scope of application of such models to disease pathways, espe-
cially cancer pathways. Such pathways usually demonstrate a 
high degree of heterogeneity across subgroups. Recent stud-
ies have demonstrated that cancer is characterized as much by 
marginal differences in biomarker expression as by network 
topologies. Models, like the proposed one, statistically iden-
tify complex factors responsible for variation in drug response 
to cancer. We acknowledge that translating such research into 
drug development is a long and complicated process requiring 
several intermediate steps. However, we hope it would play an 
influential role in the development-targeted therapeutics in 
the long run.34,35 In general, the ability to accurately estimate  
stimulus-specific network topology can highly improve research 
within systems biology, pharmacology, and related disciplines.

Finally, we emphasize that for modeling biological net-
works across related disease subcategories, related genes, 

and protein-pathways targeted by the same drug, single 
independent network inference is no longer adequate. This is a 
problem that needs to be addressed with the growing relevance 
of network models in systems biology.
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