Close
Help
Need Help?



A Hybrid Approach for Biomarker Discovery from Microarray Gene Expression Data for Cancer Classification

Submit a Paper


Libertas Press Analytics


1773 Article Views

Publication Date: 22 Feb 2007

Journal: Cancer Informatics 2006:2 301-311

CI
journal

275,727 Article Views

2,621,703 Libertas Article Views

More Statistics

Abstract Yanxiong Peng1,2, Wenyuan Li1,2 and Ying Liu1,2,3

1Laboratory for Bioinformatics and Medical Informatics, 2Department of Computer Science, 3Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, U.S.A.

Abstract: Microarrays allow researchers to monitor the gene expression patterns for tens of thousands of genes across a wide range of cellular responses, phenotype and conditions. Selecting a small subset of discriminate genes from thousands of genes is important for accurate classification of diseases and phenotypes. Many methods have been proposed to find subsets of genes with maximum relevance and minimum redundancy, which can distinguish accurately between samples with different labels. To find the minimum subset of relevant genes is often referred as biomarker discovery. Two main approaches, filter and wrapper techniques, have been applied to biomarker discovery. In this paper, we conducted a comparative study of different biomarker discovery methods, including six fi lter methods and three wrapper methods. We then proposed a hybrid approach, FR-Wrapper, for biomarker discovery. The aim of this approach is to find an optimum balance between the precision of the biomarker discovery and the computation cost, by taking advantages of both filter method’s efficiency and wrapper method’s high accuracy. Our hybrid approach applies Fisher’s ratio, a simple method easy to understand and implement, to filter out most of the irrelevant genes, then a wrapper method is employed to reduce the redundancy. The performance of FR-Wrapper approach is evaluated over four widely used microarray datasets. Analysis of experimental results reveals that the hybrid approach can achieve the goal of maximum relevance with minimum redundancy.


Post a Comment

x close

Discussion Add A Comment
No comments yet...Be the first to comment.


share on

Our Service Promise

  • Prompt Processing (Average 3 Weeks)
  • Fair & Constructive Peer Review
  • Professional Author Service
  • High Visibility
  • High Readership
  • What Our Authors Say

Quick Links

Follow Us We make it easy to find new research papers. RSS Feeds Email Alerts Twitter

BROWSE CATEGORIES
Our Testimonials
I had an excellent experience publishing our review article in Clinical Medicine Reviews.  The managing editor was very helpful and the process was very timely and transparent.
Professor Jonathan A. Bernstein (University of Cincinnati College of Medicine, Division of Immunology, Allergy Section, Cincinnati, OH, USA) What our authors say