Close
Help




JOURNAL

Biomedical Informatics Insights

Using Empirically Constructed Lexical Resources for Named Entity Recognition

Submit a Paper


Biomedical Informatics Insights 2013:Suppl. 1 17-27

Original Research

Published on 24 Jun 2013

DOI: 10.4137/BII.S11664


Further metadata provided in PDF



Sign up for email alerts to receive notifications of new articles published in Biomedical Informatics Insights

Abstract

Because of privacy concerns and the expense involved in creating an annotated corpus, the existing small-annotated corpora might not have sufficient examples for learning to statistically extract all the named-entities precisely. In this work, we evaluate what value may lie in automatically generated features based on distributional semantics when using machine-learning named entity recognition (NER). The features we generated and experimented with include n-nearest words, support vector machine (SVM)-regions, and term clustering, all of which are considered distributional semantic features. The addition of the n-nearest words feature resulted in a greater increase in F-score than by using a manually constructed lexicon to a baseline system. Although the need for relatively small-annotated corpora for retraining is not obviated, lexicons empirically derived from unannotated text can not only supplement manually created lexicons, but also replace them. This phenomenon is observed in extracting concepts from both biomedical literature and clinical notes.



Downloads

PDF  (646.58 KB PDF FORMAT)

RIS citation   (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)

BibTex citation   (BIBDESK, LATEX)

XML

PMC HTML


Sharing


What Your Colleagues Say About Biomedical Informatics Insights
testimonial_image
It's a great experience publishing with Biomedical Informatics Insights. I am particularly impressed with the in-depth and constructive comments provided by the reviewers within such a short time-frame. The typesetting was not only prompt, but most importantly, effective. In fact, this was among the very few publication experiences that I have had when no correction was needed in the author proofs. I highly recommend Biomedical Informatics Insights to both readers and prospective ...
Dr Chun Hsi Huang (Computer Science and Engineering, University of Connecticut)
More Testimonials

Quick Links


New article and journal news notification services
Email Alerts RSS Feeds
Facebook Google+ Twitter
Pinterest Tumblr YouTube