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Abstract: Because of privacy concerns and the expense involved in creating an annotated corpus, the existing small-annotated  corpora 
might not have sufficient examples for learning to statistically extract all the named-entities precisely. In this work, we evaluate 
what value may lie in automatically generated features based on distributional semantics when using machine-learning named entity 
recognition (NER). The features we generated and experimented with include n-nearest words, support vector machine (SVM)-
regions, and term clustering, all of which are considered distributional semantic features. The addition of the n-nearest words feature 
resulted in a greater increase in F-score than by using a manually constructed lexicon to a baseline system. Although the need for 
relatively small-annotated corpora for retraining is not obviated, lexicons empirically derived from unannotated text can not only 
supplement manually created lexicons, but also replace them. This phenomenon is observed in extracting concepts from both biomedi-
cal literature and clinical notes.
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Background
One of the most time-consuming tasks faced by a 
Natural Language Processing (NLP) researcher or 
practitioner trying to adapt a machine–learning based 
NER system to a different domain is the creation, 
compilation, and customization of the needed lexi-
cons. Lexical resources, such as lexicons of concept 
classes, are considered necessary to improve the per-
formance of NER. It is  typical for medical informat-
ics researchers to implement modularized systems 
that cannot be generalized.1 As the work of construct-
ing or customizing lexical resources needed for these 
highly specific systems is human-intensive, automatic 
generation is a desirable alternative. It might be pos-
sible that empirically created lexical resources would 
incorporate domain knowledge into a machine-learn-
ing NER engine and increase its accuracy.

Although many machine–learning based NER 
techniques require annotated data, semi-supervised 
and unsupervised techniques for NER have long been 
explored due to their value in domain robustness and 
minimizing labor costs. Some attempts at automatic 
knowledgebase construction included  automatic 
thesaurus discovery efforts,2 which sought to build 
lists of similar words without human interven-
tion to aid in query expansion or automatic lexicon 
 construction.3 More recently, the use of empirically 
derived semantics for NER is used by Finkel and 
Manning,4 Turian et al,5 and Jonnalagadda et al6 
 Finkel’s NER tool uses clusters of terms built apriori 
from the  British National corpus7 and English giga-
word  corpus8 for extracting concepts from newswire 
text and PubMed abstracts for extracting gene men-
tions from biomedical  literature. Turian et al5 also 
showed that statistically created word clusters9,10 
could be used to improve named entity recognition. 
However, only a single feature (cluster membership) 
can be derived from the clusters. Semantic vector 
representations of terms had not been used for NER 
or sequential tagging classification tasks before.5 
Although Jonnalagadda et al6 use empirically derived 
vector representation for extracting concepts defined 
in the GENIA11 ontology from biomedical literature 
using rule-based methods, it was not clear whether 
such methods could be ported to extract other con-
cepts or incrementally improve the performance of 
an existing system. This work not only demonstrates 
how such vector representation could improve state-

of-the-art NER, but also that they are more useful 
than statistical clustering in this context.

Methods
We designed NER systems to identify treatment, 
tests, and medical problem entities in clinical notes 
and proteins in biomedical literature. Our systems 
are trained using (1) sentence-level features using 
 training corpus; (2) a small lexicon created, com-
piled, and curated by humans for each domain; and 
(3) distributional semantics features derived from a 
large unannotated corpus of domain-relevant text. 
 Different models are generated through different 
combinations of these features. After training for 
each concept class, a Conditional Random Fields 
(CRF) machine-learning model12 is created to process 
input sentences using the same set of NLP features. 
The output is the set of sentences with the concepts 
tagged. We evaluated the performance of the different 
models in order to assess the degree to which human-
curated lexicons can be substituted by the automati-
cally created list of concepts.

The architecture of the system is shown in  Figure 1 
and the different components and settings are detailed 
in Table 1. We first used a state-of-the-art NER 
 algorithm, CRF, as implemented by MALLET,13 that 
extracts concepts from both clinical notes and bio-
medical literature using several sentence-level ortho-
graphic and linguistic features derived from respective 
training corpora. Then, we studied the impact on the 
performance of the baseline after incorporating man-
ual lexical resources and empirically generated lexical 
resources. The CRF algorithm classifies words accord-
ing to IOB or IO-like notations (I = inside, O = outside, 
B = beginning) to determine whether they are part of 
a description of an entity of interest, such as a treat-
ment or protein. We used four labels for clinical NER: 
“Iproblem,” “Itest,” and “Itreatment,” for tokens that 
were inside a problem, test, or treatment respectively, 
and “O” if they were outside any clinical concept. For 
protein tagging, we used the IOB notation, ie, the three 
labels “Iprotein,” “Bprotein,” and “O.”

Several sentence-level orthographic and linguistic 
features such as lower-case tokens, lemmas, prefixes, 
suffixes, n-grams, patterns such as “beginning with a 
capital letter” and parts of speech were adapted from 
the OpenNLP14 package to build the NER model and 
tag the entities in input sentences. This configuration 
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Figure 1. Overall Architecture of the System. 
notes: The design of the system to identify concepts using machine learning and distributional semantics. The top three components are related to dis-
tributional semantics.

is referred to as MED_noDict for clinical NER and 
BANNER_noDict for protein tagging.

The UMLS Metathesaurus,15 MedDRA,16 
DrugBank,17 and Drugs@FDA18 are used to  create 
dictionaries for medical problems, treatments, and 
tests. The guidelines of the i2b2/VA NLP entity extrac-
tion task19 are followed to identify the corresponding 
UMLS semantic types for each of the three concepts. 
The other three resources are used to add more terms 
to our manual lexicon. In an exhaustive evaluation on 
the nature of the resources by Gurulingappa et al,20 
UMLS and MedDRA were found to be the best 
resources for extracting information about medical 
problems among several other resources. For protein 
tagging, BANNER,21 one of the best protein-tagging 
systems,22 uses the 344,000 single-word lexicon con-
structed using the BioCreative II gene normaliza-
tion training set.23 This configuration is referred to as 
MED_Dict for clinical NER and as BANNER_Dict 
for protein tagging.

Distributional semantic Feature 
Generation
Here, we implemented automatically generated 
distributional semantic features based on a seman-
tic vector space model trained from unannotated 
 corpora. This model, referred to as the directional 
model, uses a sliding window that is moved through 

the text corpus to generate a reduced-dimensional 
approximation of a token-token matrix, such that 
two terms that occur in the context of similar sets 
of surrounding terms will have similar vector repre-
sentations after training. As the name suggests, the 
directional model takes into account the direction 
in which a word occurs with respect to another by 
generating a reduced- dimensional approximation of 
a matrix with two columns for each word, with one 
column representing the number of occurrences to 
the left and the other column representing the num-
ber of occurrences to the right. The directional model 
is therefore a form of sliding-window based Random 
Indexing,24 and is related to the Hyperspace Analog 
to  Language.25 Sliding- window Random Indexing 
models achieve dimension reduction by assigning 
a reduced- dimensional index vector to each term in 
a corpus. Index vectors are high dimensional (eg, 
dimensionality on the order of 1,000), and are gen-
erated by randomly distributing a small number 
(eg, on the order of 10) of +1’s and -1’s across this 
 dimensionality. As the rest of the elements of the index 
vectors are 0, there is a high  probability of index vec-
tors being orthogonal, or close-to- orthogonal to one 
another. These index vectors are combined to gen-
erate context vectors representing the terms within 
a sliding  window that is moved through the cor-
pus. The semantic vector for a token is obtained by 
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Table 1. Description of different components and settings of the system.

name Description
clinical neR
Conditional random  
Fields (CrF)12

CrF is a sequential deterministic machine learning algorithm that is considered state 
of the art for concept extraction in general english, biomedical literature and clinical 
narratives. We use the MALLeT13 toolkit’s implementation of our CrF paper.

Sentence-level orthographic  
and linguistic features

These machine learning features used by all the settings are generated through NLP tasks 
such as tokenization, part-of-speech tagging, chunking and parsing. We used Apache 
OpenNLP14 library for implementing these sentence-level tasks.

MED_noDict MED_noDict is the CRF-based clinical NER system with all the sentence-level 
orthographic and syntactic features generated from OpenNLP.

Lexicons for clinical concept  
extraction

Compiled from UMLS Metathesaurus15—built from the electronic versions of various 
thesauri, classifications, code sets, and lists of controlled terms; MedDRA16—medical 
terminology for medical products used by humans; DrugBank17—combines detailed drug 
(ie, chemical, pharmacological and pharmaceutical) data with comprehensive drug target; 
Drugs@FDA18—FDA-approved brand name and generic prescription and over-the-counter 
human drugs.

MED_Dict The clinical NER system with several sentence-level orthographic and syntactic features, 
along with features from the above four lexicons.

Semantic vectors26 Semantic Vectors creates semantic vector spaces of individual tokens and documents 
from free natural language text. This package is extended in this paper to empirically 
construct three different types of lexical resources for this project: Quasi-lexicons using 
SVM, Word clusters using K-means, Quasi-thesaurus using K-nearest neighbor.

MED_Dict+SVM The quasi-lexicons from Semantic Vectors are used in addition to the features in MED_Dict.
MED_Dict+NN The quasi-thesaurus from Semantic Vectors are used in addition to the features in MED_Dict.
MED_Dict+CL The word clusters from Semantic Vectors are used in addition to the features in MED_Dict.
MED_Dict+NN+SVM The quasi-lexicons and quasi-thesaurus from Semantic Vectors are used in addition to the 

features in MED_Dict.
MED_noDict+NN+SVM The quasi-lexicons and quasi-thesaurus from Semantic Vectors are used in addition to the 

features in MED_noDict.
protein neR
BANNer21 One of the best CrF-based protein-tagging systems.22

BioCreative II gene  
normalization training set23

The source for the 344,000 single-word lexicon used by BANNer by default  
(called BANNer_Dict in this paper).

BANNER_Dict+DistSem The system that uses both manual and empirical lexical resources.
BANNER_noDict The system that uses neither manual nor empirical lexical resources.
BANNER_noDict+DistSem The system that uses only empirical lexical resources.

adding the contextual vectors gained at each occur-
rence of the token, which are derived from the index 
vectors for the other terms it occurs with within the 
sliding window. The model was built using the open 
source Semantic Vectors package.26 Random index-
ing is more suitable than Latent Semantic Analysis 
(LSA) or topic models (LDA, etc.) when applied to 
a huge unannotated corpus, such as tens of thousands 
of clinical narratives or clinical abstracts.28

The performance of distributional models 
depends on the availability of an appropriate corpus 
of domain-relevant text. For clinical NER, 447,000 
Medline abstracts that are indexed as pertaining to 
clinical  trials are used as the unlabeled corpus. In 

addition, we have also used clinical notes from the 
Mayo Clinic and the University of Texas Health Sci-
ence Center to understand the impact of the source 
of unlabeled  corpus. For protein NER, 8,955,530 
Medline citations in the 2008 baseline release that 
include an abstract27 are used as the large unlabeled 
corpus. Previous experiments28 revealed that using 
a directional model with 2000-dimensional vectors, 
five seeds (number of +1’s and –1’s in the vector), 
and a window radius of six is better suited for the 
task of NER. While a stop-word list is not employed, 
we have rejected tokens that appear only once in the 
unlabeled corpus or have more than three nonalpha-
betical characters.
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SVM: quasi-lexicons of concept classes 
using SVM
A support vector machine (SVM)29 is designed to draw 
hyper-planes separating two class regions such that 
they have a maximum margin of separation.  Creating 
the quasi-lexicons (automatically generated word 
lists) is equivalent to obtaining samples of regions 
in the distributional hyperspace that contain tokens 
from the desired (problem, treatment, test, and none) 
semantic types. In clinical NER, each token in a train-
ing set can belong to either one or more of the classes: 
problem, treatment, test, or none of these. Each token 
is labeled as “Iproblem,” “Itest,” “Itreatment,” or 
“Inone.” To remove ambiguity, tokens that belong 
to more than one category are discarded. For exam-
ple, based on the information that “thoracic cancer” 
is a problem, “CT of the thoracic cavity” is a test 
and  “thoracic surgery” is a treatment, “thoracic” is 
discarded, “cancer” is labeled as problem, “CT” is 
labeled as test, and “surgery” is labeled as treatment. 
Each token has a representation in the distributional 
hyperspace of 2,000 dimensions. Six (C[4, 2] = 4!/
[2!*2!]) binary SVM classifiers are generated for pre-
dicting the class of any token among the four possible 
categories. During the execution of the training and 
testing phase of the CRF machine-learning algorithm, 
the class predicted by the SVM classifiers for each 
token is used as a feature for that token.

CL: clusters of distributionally similar 
words over K-means
The K-means clustering algorithm30 is used to group 
the tokens in the training corpus into 200 clusters using 
distributional semantic vectors. As an illustration, 
cluster number 33 contains the tokens:  Sept, August, 
January, December, October, March, April,  November, 
June, July, Nov, February, and September. Cluster 
number 46 contains the tokens:  staphylococcus, fae-
cium, enterococci, staphylococci, hemophilus, strep-
tococcus, pneumoniae, klebsiella, bacteroides, coli, 
enterobacter, mycoplasma, aureus, anitratus, influen-
zae, calcoaceticus, serratia, aeruginosa, diphtheroids, 
proteus, methicillin, enterococcus, cloacae, oxacillin, 
mucoid, escherichia, mirabilis, fragilis, citrobacter, 
staph, acinetobacter, faecalis, pseudomonas, legio-
nella, coagulase, and viridans. The cluster  identifier 

assigned to the target token is used as a feature for the 
CRF-based system for NER. This feature is similar 
to the Clark’s automatically created clusters,10 used 
by Finkel and Manning,31 where the same number of 
clusters are used. We focused on using features gen-
erated from semantic vectors as they allow us to also 
create the other two types of features.

NN: quasi-thesaurus of distributionally 
similar words using nearest neighbors
Cosine similarity of vectors is used to find the 20 nearest 
tokens for each token. These nearest tokens are used as 
features for the respective target token. Figure 2 shows 
the top few tokens closest in the word space to 
 “haloperidol” to demonstrate how well the semantic 
vectors are computed. Each of these nearest tokens is 
used as an additional feature whenever the target token 
is encountered. Barring evidence from other features, 
the word “haloperidol” would be classified as belong-
ing to the “medical treatment,” “drug,” or “psychiatric 
drug” semantic class based on other words belonging 
to that class sharing nearest neighbors with it.

evaluation strategy
The previous sub-sections detail how the manually 
created lexicons are compiled and how the empirical 
lexical resources are generated from semantic vectors 
(2000 dimensions). In the machine-learning system for 
extracting concepts from literature and clinical notes, 
each manually created lexicon (three for the clinical 
notes task) contributes one binary feature whose value 
depends on whether a term surrounding the word is 
present in the lexicon. Each  quasi-lexicon will also 

Cimetidine
Imipramine

Haloperidol

Amitriptyline

Propranolol

Clomipramine

FluoxetineGlibenclamideRisperidone

Maprotiline

Diazepam

Figure 2. Nearest Tokens to haloperidol. 
notes: The closest tokens to haloperidol in the word space are psychi-
atric drugs. Using the nearest tokens to haloperidol as features, when 
haloperidol is not a manually compiled lexicon or when the context is 
unclear, would help to still infer (statistically) that haloperidol is a drug 
(medical treatment).
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contribute one binary feature whose value depends 
on the output of the SVM classifier discussed before. 
Together, the distributional semantic clusters contrib-
ute a feature whole value that is the id of the clus-
ter which the word belongs to. The quasi- thesaurus 
contributes 20 features which are the 20 words distri-
butionally similar to the word for which features are 
being generated.

As a gold standard for clinical NER, the fourth 
i2b2/VA NLP shared-task corpus19 for extracting 
concepts of the classes―problems, treatments, and 
tests―was used. The corpus contains 349 clinical 
notes as training data and 477 clinical notes as test-
ing data. For protein tagging, the BioCreative II Gene 
Mention Task32 corpus is used. The corpus contains 
15,000 training set sentences and 5,000 testing set 
sentences.

Results
Comparison of different types of lexical 
resources on extracting clinical concepts
Table 2 shows that the F-score of the clinical NER 
system for exact match increases by 0.3% after 
adding quasi-lexicons, whereas it increases by 
1.4% after adding the quasi-thesaurus. The F-score 
increases slightly more with the use of both these 
features. The F-score for an inexact match fol-
lows a similar  pattern. Table 2 also shows that 
the F-score for an exact match increases by 0.5% 
after adding  clustering-based features, whereas it 
increases by 1.6% after adding quasi-thesaurus and 
 quasi- lexicons. The F-score decreases slightly with 
the use of both the features. The F-score for an inex-
act match follows a similar pattern.

Overall impact on extracting clinical 
concepts
Table 3 shows how the F-score increased over the base-
line (MED_noDict, which uses various sentence-level 
orthographic and syntactic features). After manually 
constructed lexicon features are added (MED_Dict), 
it increased by 0.9%. On the other hand, if only dis-
tributional semantic features (quasi-thesaurus and 
quasi- lexicons) were added without using manually con-
structed lexicon features (MED_noDict+NN+SVM), 
it increased by 2.0% (P , 0.001 using Bootstrap 
 Resampling33 with 1,000 repetitions). It increases only 
by 0.5% more if the manually constructed lexicon 
features were used along with distributional semantic 
features (MED_Dict+NN+SVM). The F-score for an 
inexact match follows a similar pattern.

Moreover, the improvement was consistent even 
across different concept classes, namely medical prob-
lems, tests, and treatments. Each time the distribu-
tional semantic features are added, the number of TPs 
increases, and the number of FPs and FNs decreases.

Impact of the source of the unlabeled data
We utilized three sources for creating the distribu-
tional semantics models for NER from i2b2/VA clini-
cal notes corpus. The first source is the set of Medline 
abstracts indexed as pertaining to clinical trials 
(447,000 in the 2010 baseline). The second source is 
the set of 0.8 million clinical notes (half of the total 
available) from the clinical data warehouse at the 
School of Biomedical Informatics, University of Texas 
Health Sciences Center, Houston, Texas (http://www.
uthouston.edu/uth-big/clinical-data-warehouse.htm). 
The third source is the set of 0.8 million  randomly 

Table 2. Clinical Ner: comparison of SVM-based features and clustering-based features with N-nearest neighbors– 
based features.

setting exact F Inexact F exact increase Inexact increase
MeD_Dict 80.3 89.7  
MeD_Dict+SVM 80.6 90 0.3 0.3
MeD_Dict+NN 81.7 90.9 1.4 1.2
MeD_Dict+NN+SVM 81.9 91 1.6 1.3
MeD_Dict+CL 80.8 90.1 0.5 0.4
MeD_Dict+NN+SVM+CL 81.7 90.9 1.4 1.2

notes: MeD_Dict is the baseline, which is a machine-learning clinical Ner system with several sentence-level orthographic and syntactic features, along 
with features from lexicons such as UMLS, Drugs@FDA, and MedDrA. In MeD_Dict+SVM, the quasi-lexicons are also used. In MeD_Dict+NN, the quasi-
thesaurus is used. In MeD_Dict+CL, the clusters automatically generated are used in addition to other features in MeD_Dict. exact F is the F-score for 
exact match as calculated by the shared task software. Inexact F is the F-score for inexact match or matching only a part of the other. exact Increase is 
the increase in exact F from previous row. Inexact Increase is the increase in Inexact F from previous row.
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Table 3. Clinical Ner: impact of distributional semantic features.

setting exact F Inexact F exact increase Inexact increase
MeD_noDict 79.4 89.2
MeD_Dict 80.3 89.7 0.9 0.5
MeD_noDict+NN+SVM 81.4 90.8 2.0 1.6
MeD_Dict+NN+SVM 81.9 91.0 2.5 1.8

notes: MeD_noDict is the machine-learning clinical Ner system with all the sentence-level orthographic and syntactic features, but no features from 
lexicons such as UMLS, Drugs@FDA, and MedDrA. MeD_noDict+NN+SVM also has the features generated using SVM and the nearest neighbors 
algorithm.

Table 4. Clinical Ner: impact of the source of unlabeled 
corpus.

Unlabeled corpus exact F Inexact F
None 80.3 89.7
Medline 81.9 91.0
UT houston 82.3 91.3
Mayo 82.0 91.3

notes: None = The machine-learning clinical Ner system that does 
not use any distributional semantic features. Medline = The machine-
learning clinical Ner system that uses distributional semantic features 
derived from the Medline abstracts indexed as pertaining to clinical trials. 
UT houston = The machine-learning clinical Ner system that uses 
distributional semantic features derived from the notes in the clinical data 
warehouse at University of Texas health Sciences Center. Mayo = The 
machine-learning clinical Ner system that uses distributional semantic 
features derived from the clinical notes of Mayo Clinic, rochester, MN.

chosen clinical notes written by clinicians at Mayo 
Clinic in Rochester. Table 4 shows the performance 
of the systems that use each of these sources for cre-
ating the distributional semantics features. Each of 
these systems has a significantly higher F-score than 
the system that does not use any distributional seman-
tic feature (P , 0.001 using Bootstrap Resampling33 
with 1,000 repetitions and a difference in F-score of 
2.0%). The F-scores of these systems are almost the 
same (differing by ,0 .5%).

Impact of the size of the unlabeled data
Using a set of 1.6 million clinical notes from the clin-
ical data warehouse at the University of Texas Health 
Sciences Center (after adding 0.8 million clinical notes 
to those in the previous experiment) as the baseline, 
we studied the relationship between the size of the 
unlabeled corpus used and the accuracy achieved. We 
randomly created subsets of size one-half, one-fourth, 
and one-eighth the original corpus and measured the 
respective F-scores. Figure 3 depicts the F-score for 
exact match and inexact match, suggesting a mono-
tonic relationship with the number of documents used 

for creating the distributional semantic measures. 
While there is a leap from not using any unlabeled 
corpus to using 0.2 million clinical notes, the F-score 
is relatively constant from there. We might infer that 
by incrementally adding more documents to the unla-
beled corpus, one would be able to determine what 
size of corpus is sufficient.

Impact on extracting protein mentions
In Table 5, the performance of BANNER with dis-
tributional semantic features (row 3) and without 
distributional semantic features (row 9) is compared 
with the top ranking systems in the most recent gene-
mention task of the BioCreative shared tasks. Each 
system has an F-score that has a statistically sig-
nificant comparison (P , 0.05) with the teams indi-
cated in the Significance column. The significance is 
estimated using Table 1 in the BioCreative II gene 
mention task.32 The performance of BANNER with 
distributional semantic features and no manually con-
structed lexicon features is better than BANNER with 
manually constructed lexicon features and no distri-
butional semantic features. This demonstrates again 
that distributional semantic features (that are gener-
ated automatically) are more useful than manually 
constructed lexicon features (that are usually com-
piled and cleaned manually) as a means to enhance 
supervised machine learning for NER.

Discussion
The evaluations for clinical NER reveal that the dis-
tributional semantic features are better than manually 
constructed lexicon features. Some examples of the 
differences in the output are shown in Table 6. The 
accuracy further increases when both manually cre-
ated dictionaries and distributional semantic feature 
types are used, but the increase is not very significant 
(P = 0.15 using Bootstrap Resampling33 with 1,000 
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Figure 3. Impact of the size of the unlabeled corpus. 
notes: On the X-axis, N represents the system created using distributional semantic features from N- unlabeled documents. N = 0 refers to the system that 
does not use any distributional semantic feature.

Table 5. Protein tagging: impact of distributional semantic features on BANNer.

Rank setting precision Recall F-score Significance
1 rank 1 system 88.48 85.97 87.21 6–11
2 rank 2 system 89.30 84.49 86.83 8–11
3 BANNer_Dict+DistSem 88.25 85.12 86.66 8–11
4 rank 3 system 84.93 88.28 86.57 8–11
5 BANNer_noDict+DistSem 87.95 85.06 86.48 10–11
6 rank 4 system 87.27 85.41 86.33 10–11
7 rank 5 system 85.77 86.80 86.28 10–11
8 rank 6 system 82.71 89.32 85.89 10–11
9 BANNer_Dict 86.41 84.55 85.47 –
10 rank 7 system 86.97 82.55 84.70 –
11 BANNer_noDict 85.63 83.10 84.35 –

notes: The significance column indicates which systems are significantly less accurate than the system in the corresponding row. These values are 
based on the Bootstrap re-sampling calculations performed as part of the evaluation in the BioCreative II shared task (the latest gene or protein tagging 
task). BANNer_Dict+DistSem is the system that uses both manual and empirical lexical resources. BANNer_noDict+DistSem is the system that uses 
only empirical lexical resources. BANNer_Dict is the system that uses only manual lexical resources. This is the system available prior to this research, 
and the baseline for this study. BANNer_noDict is the system that uses neither manual nor empirical lexical resources. BANNer_Dict+DistSem is the 
system that is significantly more accurate than the baseline. It is equally important to the improvement that the accuracy of BANNER_noDict+DistSem 
is better than BANNER_noDict. The most significant contribution in terms of research is that an equivalent accuracy (BANNER_noDict+DistSem and 
BANNer_Dict) could be achieved even without using any manually compiled lexical resources apart from the annotated corpora.

repetitions). This shows that distributional semantic 
features could supplement manually built lexicons, 
but the development of the lexicon, if it does not exist, 
might not be as critical as previously believed. We 
speculate that the improvement is because the empiri-
cally constructed lexical resources provide additional 
semantic information about the concept (bradycardia 
in example 2, cannula in example 3) and enhance the 
confidence of the machine learning system about an 
existing lexicon entry (mensa in example 1).  Further, 
the n-nearest neighbor (quasi-thesaurus) features 
are better than SVM-based (quasi-lexicons) and 
 clustering-based (quasi-clusters) features for improv-
ing the accuracy of clinical NER (P , 0.001 using 
Bootstrap Resampling33 with 1,000 repetitions). For the 
protein extraction task, the improvement after adding 

the distributional semantic features to  BANNER is 
also significant (P , 0.001 using Bootstrap Resam-
pling33 with 1,000 repetitions). The absolute ranking 
of BANNER with respect to other systems in the Bio-
Creative II task improves from 8 to 3. The F-score of 
the best system is not significantly better than that of 
BANNER with distributional semantic features. We 
again notice that distributional semantic features are 
more useful than manually constructed lexicon fea-
tures alone. The purpose of using protein mention 
extraction in addition to NER from clinical notes is 
to verify that the methods are generalizable. Hence, 
we only used the nearest neighbor or quasi- thesaurus 
features (as the other features contributed little) for 
protein mention extraction and have not studied the 
impact of the source or size of the unlabeled data 
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Table 6. example outputs of the additional true positives 
found in the clinical Ner system that uses distributional 
semantic features over the one that does not.

Annotation sentence Quasi-  
thesaurus

Concept = mesna;  
type = treatment

She also received  
Cisplatin 35 per  
meter squared  
on 06/19 and  
Ifex and Mesna  
on 06/18

Mesna
etoposide
DTIC
Cisplatinum
Cisplatin
CDDP
5-fu
hydroxyurea
gemcitabine
Ceftriaxone
Mitoxantrone
VP-16
Ifo
Irinotecan
Ifosfamide
Carboplatin
Idarubicin
epirubicin
Dexamethasone
Prednisolone

Concept = mild  
bradycardia;  
type = problem

May start beta-
blocker at a low 
dose given mild 
bradycardia at 
atenolol 50 mg  
p.o. q day

Bradycardia
hypotension
Dysphagia
hemorrhages
edema
Bleeding
Dyspnea
Agitation
hypoxemia
Fever
Diarrhea
hyponatremia
Nephrotoxicity
Atelectasis
Sedation
Cough
Pruritus
Neurologic
Proteinuria
Ar

Concept = 2 liters  
nasal cannula  
oxygen; type =  
treatment

She needs home  
oxygen and is  
currently at  
2 liters nasal  
cannula oxygen

cannula
Syringe
Prosthesis
Plate
Flap
electrode
Stimulus
reservoir
Filter
Bar
Catheter
Sensor
Probe

(Continued)

Table 6. (Continued)

Annotation sentence Quasi- 
thesaurus
Tube
Preparation
endoscope
Device
Port
Apparatus
Dressing

notes: These examples are from the annotated corpus that belongs 
to Partners healthcare. We were allowed to share them publicly after 
removing the protected health information.

 separately. The advantages of our features are that 
they are independent of the machine-learning system 
used and can be used to further improve the perfor-
mance of forthcoming algorithms.

The improvement in F-scores after adding manu-
ally compiled dictionaries (without distributional 
semantic features) is only around 1%. However, 
many NER tools, both in the genomic domain21,34 
and in the clinical domain35,36 use dictionaries. This 
is partly because systems trained using supervised 
machine-learning algorithms are often sensitive to 
the distribution of data, and a model trained on one 
corpus may perform poorly on those trained from 
another. For example, Wagholikar37 recently showed 
that a machine-learning model for NER trained on 
the i2b2/VA corpus achieved a significantly lower 
F-score when tested on the Mayo Clinic corpus. 
Other researchers recently reported this phenom-
enon for part of speech tagging in clinical domain.38 
A similar observation was made for the protein-named 
entity extraction using the GENIA, GENETAG, and 
AIMED corpora,39,40 as well as for protein-protein 
interaction extraction using the GENIA and AIMED 
corpora.41,42 The domain knowledge gathered through 
these semantic features might make the system less 
sensitive. This work showed that empirically gained 
semantics are at least as useful for NER as the manu-
ally compiled dictionaries. It would be interesting to 
see if such a drastic decline in performance across 
different corpora could be countered using distribu-
tional semantic features.

Currently, very little difference is observed 
between using distributional semantic features 
derived from Medline and unlabeled clinical notes 
for the task of clinical NER. Future research would 
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study the impact of using clinical notes related to a 
specific specialty of medicine. We hypothesize that 
the distributional semantic features from clinical 
notes of a subspecialty might be more useful than 
the  corresponding literature. Our current results lack 
qualitative evaluation. As we repeat the experiments 
in a subspecialty such as cardiology, we would be 
able to involve the domain experts in the qualitative 
analysis of the distributional semantic features and 
their role in the NER.

conclusion
Our evaluations using clinical notes and biomedical 
literature validate that distributional semantic fea-
tures are useful to obtain domain information auto-
matically, irrespective of the domain, and can reduce 
the need to create, compile, and clean dictionaries, 
thereby facilitating the efficient adaptation of NER 
systems to new application domains. We showed this 
through analyzing results for NER of four different 
classes (genes, medical problems, tests, and treat-
ments) of concepts in two domains (biomedical lit-
erature and clinical notes). Though the combination 
of manually constructed lexicon features and distri-
butional semantic features provides a slightly better 
performance, suggesting that a manually constructed 
lexicon should be used if available, the de-novo cre-
ation of a lexicon for purpose of NER is not needed.

The distributional semantics model for Medline 
and the quasi-thesaurus prepared from the i2b2/VA 
corpus and the clinical NER system’s code is avail-
able at (http://diego.asu.edu/downloads/AZCCE/) 
and the updates to the BANNER system are incorpo-
rated at http://banner.sourceforge.net/.
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