Close
Help




JOURNAL

Cancer Informatics

Network-Based Identification of Biomarkers Coexpressed with Multiple Pathways

Submit a Paper


Cancer Informatics 2014:Suppl. 5 37-47

Review

Published on 16 Oct 2014

DOI: 10.4137/CIN.S14054


Further metadata provided in PDF



Sign up for email alerts to receive notifications of new articles published in Cancer Informatics

Abstract

Unraveling complex molecular interactions and networks and incorporating clinical information in modeling will present a paradigm shift in molecular medicine. Embedding biological relevance via modeling molecular networks and pathways has become increasingly important for biomarker identification in cancer susceptibility and metastasis studies. Here, we give a comprehensive overview of computational methods used for biomarker identification, and provide a performance comparison of several network models used in studies of cancer susceptibility, disease progression, and prognostication. Specifically, we evaluated implication networks, Boolean networks, Bayesian networks, and Pearson’s correlation networks in constructing gene coexpression networks for identifying lung cancer diagnostic and prognostic biomarkers. The results show that implication networks, implemented in Genet package, identified sets of biomarkers that generated an accurate prediction of lung cancer risk and metastases; meanwhile, implication networks revealed more biologically relevant molecular interactions than Boolean networks, Bayesian networks, and Pearson’s correlation networks when evaluated with MSigDB database.



Downloads

PDF  (1.28 MB PDF FORMAT)

RIS citation   (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)

BibTex citation   (BIBDESK, LATEX)

XML

PMC HTML


Sharing


What Your Colleagues Say About Cancer Informatics
Publishing in Cancer Informatics was the fastest publication I have ever experienced and has received the highest viewing rate.  So it is a great place to publish your very latest research.
Dr Yue Zhang (Boston, MA, USA)
More Testimonials

Quick Links


New article and journal news notification services
Email Alerts RSS Feeds
Facebook Google+ Twitter
Pinterest Tumblr YouTube