It has become increasingly common for large-scale public data repositories and clinical settings to have multiple types of data, including high-dimensional genomics, epigenomics, and proteomics data as well as survival data, measured simultaneously for the same group of biological samples, which provides unprecedented opportunities to understand cancer mechanisms from a more comprehensive scope and to develop new cancer therapies. Nevertheless, how to interpret a wealth of data into biologically and clinically meaningful information remains very challenging. In this paper, I review recent development in statistics for integrative analyses of cancer data. Topics will cover meta-analysis of homogeneous type of data across multiple studies, integrating multiple heterogeneous genomic data types, survival analysis with high- or ultrahigh-dimensional genomic profiles, and cross-data-type prediction where both predictors and responses are high- or ultrahigh-dimensional vectors. I compare existing statistical methods and comment on potential future research problems.
PDF (553.66 KB PDF FORMAT)
RIS citation (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)
BibTex citation (BIBDESK, LATEX)
PMC HTML
Compared with other journals we considered for publishing, Cancer Informatics provided extremely rapid but quality turnaround from draft submission to a flawlessly typeset final publication. Moreover, sharing the article is now as easy as sharing a link with no subscriptions required, and additional code and data files are equally accessible, supporting reproducible research. Because it has published many of our references we feel confident that our target readership must follow the journal. This is further ...
Facebook Google+ Twitter
Pinterest Tumblr YouTube