Close
Help
Need Help?





JOURNAL

Cancer Informatics

557,023 Journal Article Views | Journal Analytics

In Silico Prediction of Synthetic Lethality by Meta-Analysis of Genetic Interactions, Functions, and Pathways in Yeast and Human Cancer

Submit a Paper



Publication Date: 05 Nov 2014

Type: Review

Journal: Cancer Informatics

Citation: Cancer Informatics 2014:Suppl. 3 71-80

doi: 10.4137/CIN.S14026

Abstract

A major goal in cancer medicine is to find selective drugs with reduced side effect. A pair of genes is called synthetic lethality (SL) if mutations of both genes will kill a cell while mutation of either gene alone will not. Hence, a gene in SL interactions with a cancer-specific mutated gene will be a promising drug target with anti-cancer selectivity. Wet-lab screening approach is still so costly that even for yeast only a small fraction of gene pairs has been covered. Computational methods are therefore important for large-scale discovery of SL interactions. Most existing approaches focus on individual features or machine-learning methods, which are prone to noise or overfitting. In this paper, we propose an approach named MetaSL for predicting yeast SL, which integrates 17 genomic and proteomic features and the outputs of 10 classification methods. MetaSL thus combines the strengths of existing methods and achieves the highest area under the Receiver Operating Characteristics (ROC) curve (AUC) of 87.1% among all competitors on yeast data. Moreover, through orthologous mapping from yeast to human genes, we then predicted several lists of candidate SL pairs in human cancer. Our method and predictions would thus shed light on mechanisms of SL and lead to discovery of novel anti-cancer drugs. In addition, all the experimental results can be downloaded from http://www.ntu.edu.sg/home/zhengjie/data/MetaSL.


Downloads

PDF  (1.31 MB PDF FORMAT)

RIS citation   (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)

Supplementary Files 1  (55.39 KB ZIP FORMAT)

BibTex citation   (BIBDESK, LATEX)

XML

PMC HTML


Sharing




What Your Colleagues Say About Cancer Informatics
testimonial_image
Compared with other journals we considered for publishing, Cancer Informatics provided extremely rapid but quality turnaround from draft submission to a flawlessly typeset final publication.  Moreover, sharing the article is now as easy as sharing a link with no subscriptions required, and additional code and data files are equally accessible, supporting reproducible research.  Because it has published many of our references we feel confident that our target readership must follow the journal.  This is further ...
Dr Seppo Karrila (Prince of Songkla University, Thailand)
More Testimonials

Quick Links


New article and journal news notification services
Email Alerts RSS Feeds
Facebook Google+ Twitter
Pinterest Tumblr YouTube