Sign up for Email Alerts and keep in touch with Biomarker Insights journal news, updates, events and articles
High-throughput gene expression microarrays can be examined by machine-learning algorithms to identify gene signatures that recognize the biological characteristics of specific human diseases, including cancer, with high sensitivity and specificity. A previous study compared 20 gastric cancer (GC) samples against 20 normal tissue (NT) samples and identified 1,519 differentially expressed genes (DEGs). In this study, Classification Information Index (CII), Information Gain Index (IGI), and RELIEF algorithms are used to mine the previously reported gene expression profiling data. In all, 29 of these genes are identified by all three algorithms and are treated as GC candidate biomarkers. Three biomarkers, COL1A2, ATP4B, and HADHSC, are selected and further examined using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) staining in two independent sets of GC and normal adjacent tissue (NAT) samples. Our study shows that COL1A2 and HADHSC are the two best biomarkers from the microarray data, distinguishing all GC from the NT, whereas ATP4B is diagnostically significant in lab tests because of its wider range of fold-changes in expression. Herein, a data-mining model applicable for small sample sizes is presented and discussed. Our result suggested that this mining model may be useful in small sample-size studies to identify putative biomarkers and potential biological features of GC.
PDF (1.30 MB PDF FORMAT)
RIS citation (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)
Supplementary Files 1 (193.10 KB ZIP FORMAT)
BibTex citation (BIBDESK, LATEX)
PMC HTML
I have had a great experience with submitting my cancer prognosis study to Biomarker Insights. The comments from reviewers and associate editor are high quality and insightful. Congratulations and keep up the good work.
Facebook Google+ Twitter
Pinterest Tumblr YouTube