Biomedical Informatics Insights 2012:5 (Suppl. 1) 137-145
Original Research
Published on 30 Jan 2012
DOI: 10.4137/BII.S8963
Sign up for email alerts to receive notifications of new articles published in Biomedical Informatics Insights
This paper presents our solution for the i2b2 sentiment classification challenge. Our hybrid system consists of machine learning and rule-based classifiers. For the machine learning classifier, we investigate a variety of lexical, syntactic and knowledge-based features, and show how much these features contribute to the performance of the classifier through experiments. For the rule-based classifier, we propose an algorithm to automatically extract effective syntactic and lexical patterns from training examples. The experimental results show that the rule-based classifier outperforms the baseline machine learning classifier using unigram features. By combining the machine learning classifier and the rule-based classifier, the hybrid system gains a better trade-off between precision and recall, and yields the highest micro-averaged F-measure (0.5038), which is better than the mean (0.4875) and median (0.5027) micro-average F-measures among all participating teams.
PDF (650.83 KB PDF FORMAT)
RIS citation (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)
BibTex citation (BIBDESK, LATEX)
PMC HTML
The publication process was efficient and well-organized. I am pleased with my decision to submit my manuscript to Biomedical Informatics Insights and highly recommend others to submit their work to the journal.
Facebook Google+ Twitter
Pinterest Tumblr YouTube