Publication Date: 21 Nov 2011
Type: Perspective
Journal: Gene Regulation and Systems Biology
Citation: Gene Regulation and Systems Biology 2011:5 89-104
doi: 10.4137/GRSB.S8542
Robustness has been long recognized to be a distinctive property of living entities. While a reasonably wide consensus has been achieved regarding the conceptual meaning of robustness, the biomolecular mechanisms underlying this systemic property are still open to many unresolved questions. The goal of this paper is to provide an overview of existing approaches to characterization of robustness in mathematically sound terms. The concept of robustness is discussed in various contexts including network vulnerability, nonlinear dynamic stability, and self-organization. The second goal is to discuss the implications of biological robustness for individual-target therapeutics and possible strategies for outsmarting drug resistance arising from it. Special attention is paid to the concept of swarm intelligence, a well studied mechanism of self-organization in natural, societal and artificial systems. It is hypothesized that swarm intelligence is the key to understanding the emergent property of chemoresistance.
PDF (635.51 KB PDF FORMAT)
RIS citation (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)
BibTex citation (BIBDESK, LATEX)
PMC HTML
Publishing in Gene Regulation and Systems Biology was a very positive experience. I was impressed by the fast and uncomplicated submission process as well as the clear and professional peer review process which helped to improve the manuscript. The Libertas Academica team was very patient and helpful. I would definitely recommend the journal to other colleagues in the field!
Facebook Google+ Twitter
Pinterest Tumblr YouTube