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Introduction
Robustness has been long recognized to be a distinctive 
property of living entities. According to,1 robustness 
is the ability of biological systems “to maintain 
phenotypic stability in the face of diverse perturbations 
arising from environmental changes, stochastic 
events and genetic variations.” A detailed account of 
the concept of biological robustness has been given 
in.2 In this paper, robustness is defined as “a property 
that enables the system to maintain its functionalities 
against external and internal perturbations.” Being 
a universal mechanism of maintaining integrity of 
life, robustness also contributes to drug resistance 
and imposes stringent requirements in drug design.3 
In particular, single molecular targeting has been 
shown to have low efficacy in many complex 
diseases like cancer or diabetes.4 On the other hand, 
notable success of non-steroidal anti-inflammatory 
drugs (NSAID) in treating or alleviating wide range 
of medical conditions suggests that low-specificity 
multiple targeting may be more efficient in therapeutic 
modification of complex biomolecular networks.5

While there exists a reasonably wide consensus 
regarding the conceptual meaning of robustness and 
its all-pervading importance in cellular functioning 
and medical applications, the biomolecular mecha-
nisms underlying this systemic property are still open 
to many unresolved questions. In the literature, the 
attempts of theoretical explanations rarely go beyond 
the analogies of automatic control theory with  
strong emphasis on the concept of feedback loops.2,6 
Import of engineering analogies into biology often 
comes with a heavy price of tacitly adopted, but poorly 
substantiated, assumptions such as linearization, sta-
tionarity, stability, and others.7 Due to mathematical 
difficulties, one of the most salient features of biolog-
ical systems, that is, multiple interactions between the 
system’s components, often remains beyond the scope 
of existing theories. Theoretically sound handling of 
these interactions inevitably leads to strongly nonlin-
ear dynamical systems of very high dimensions. The 
mathematical construct of network with links to non-
linear dynamics and graph theory provides a natural 
description of such systems.8–10 The property of robust-
ness is inherent in many natural and societal systems. 
Notable examples include  Internet, social networks, 
insect colonies, and ecological  systems, to name just 
a few. However, it should be noted that robustness 

is not an inalienable self- evident  property of all net-
works. In order to formulate more  precisely which 
networks are indeed robust and which are not, several 
prerequisites are required. First, a mathematically 
definitive and self-consistent description of the net-
works should exist. Second, the concept of robustness 
should be formulated in an unambiguous quantitative 
manner. Third, the methods should exist for estimat-
ing the quantitative measures of robustness from 
observational data. Based on the  literature  currently 
available, it may be rightfully stated that the math-
ematical science of robustness is still in its infant 
stage, and relatively few examples of reasonably well 
founded methodologies have been proposed so far. As 
indicated in Ref:2 “Given the importance of robust-
ness for the understanding of the principles of life and 
its medical implications, it is an intriguing challenge 
to formulate a mathematically solid, and  possibly 
unified theory of biological robustness that might 
serve as a basic organizational principle of biologi-
cal systems. Such a unified theory could be a bridge 
between the fundamental principles of life, medical 
practice, engineering, physics and chemistry. This is 
a difficult challenge in which a number of issues have 
to be solved, particularly to establish mathematically 
well-founded theories. However, the impact would be 
enormous.”

This paper is intended to fulfill, at least in part, 
the overall goal formulated above. In particular, 
it provides an overview of existing approaches to 
characterization of robustness in mathematically 
sound terms. Among many aspects of robustness 
and many ways of conceptualizing this systemic 
property, special attention has been paid in this paper 
to the concept of swarm intelligence, a well studied 
mechanism of self-organization in many natural, 
societal and artificial systems. The second goal is to 
discuss the implications of biological robustness for 
individual-target therapeutics and possible strategies 
for outsmarting drug resistance arising from it.

Quantitative Measures  
of Robustness
Intuitively, it seems natural to consider robustness 
as some sort of stability. This qualitative  analogy, 
however, is a shaky basis for introducing the 
quantitative measures of robustness. The concept 
of robustness is wider than the concept of stability. 
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As discussed in,2,11,12 robustness is a property of 
maintaining the functional stability but not necessarily 
the structural invariance and phenotypic stability. 
In contrast, stability per se is the characteristic of 
dynamic behavior of a system with a pre-specified 
and invariant configuration; hence, dynamic stability 
may be seen as a simple form of robustness. We 
now consider several approaches to quantifying the 
property of robustness.

Robustness as tolerance to attack  
and resistance to damage
In this approach, robustness is seen as a characteristic 
of the network in its ability to perform certain 
functions under adverse conditions. It is postulated 
that efficiency in performing these functions strongly 
depends on the existence and density of alternative 
pathways between the network’s nodes. If some links 
between the nodes are broken then average lengths of 
the pathways between any two nodes selected at random 
may increase and the network may even become 
fragmented. This increase in the average length of the 
path is interpreted as degradation in performance.13,14 
Such a notion of robustness is introduced on a purely 
intuitive level; telecommunication networks, traffic 
infrastructures, social networks, power grids, citation 
networks and many others provide fertile ground for 
supporting such intuition. Adopting this notion as  
a starting point for further logical and mathematical 
constructs, one may move on towards quantification 
of robustness. To this end, the concept of efficiency 
should be defined. Among many possibilities of 
the kind, perhaps the simplest and intuitively most 
appealing one can be introduced as follows.14 Suppose 
that dij is the shortest number of steps which are 
necessary to travel, or transmit information, from the 
node i to the node j within the network, G; this number 
is often called the network distance. Efficiency, εij, of 
the {i, j} link is defined as ε ij ijd= −1, and the global 
efficiency as the average of the pair-wise efficiencies 
over the network
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Vulnerability to damage caused by the deactivation 
of the set of nodes {i}, V{i}, may now be defined as 

decrease in global efficiency: V{i} = E(G) − E{i}(G), 
and the global vulnerability to damage as the average 
of individual vulnerabilities over all the subsets {i} of 
the same size
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where N is the total number of possible combinations 
{i}. Given these definitions, robustness may be 
quantified as the inverse or the opposite of the V (G): 
the less vulnerable is a network the more robust it is.

Two notes are in order regarding this approach to 
robustness. Firstly, not all the networks of interest, 
especially those of biological nature, are readily 
amenable to such a definition. As an ad hoc example, in 
population dynamics, the predator-prey relationships 
within the food webs can hardly be characterized in 
terms of transmission of information of some sort or 
travel between the nodes. In molecular biology, genetic 
regulatory networks can not be always reduced to the 
pair-wise interactions. The list of examples for which 
the above formulated quantification of robustness 
is not well suited may be continued. Secondly, the 
concept of robustness introduced above does not have 
any direct links to the notion of dynamic stability. 
In part, this is because in the above outlined graph-
theoretical approach to robustness, neither the links 
nor the nodes are assumed to possess any dynamic 
time-dependent properties; essentially such networks 
are static.

Robustness as manifestation  
of dynamic stability
In this approach, the system of interest is considered 
as a nonlinear dynamical system whose behavior may 
be described, at least in principle, through the laws 
of interaction between the system’s components. Let 
S be a dynamical system whose governing equation 
is written in the form

 dx/dt = F (x|θ), (1.3)

where x(t) is the time-dependent vector characterizing 
the state of the system, and θ is the vector of  structural 
parameters of the system. Let also {xp} be a set of 
fixed points, that is, the points in which F(xp|θ) = 0. 
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In applications, such points are often referred to as 
the points of equilibrium or steady states. It should be 
noted, however, that in general existence of a point 
of equilibrium does not mean that this equilibrium is 
necessarily stable, and therefore does not automati-
cally imply that xp are the steady states. In order to 
infer stability of a system at a fixed point, x0 ∈{xp}, 
one needs to linearize (1.3) thus transforming it to the 
form

 F(x) = J (x0) (x − x0), (1.4)

where J(x0) = ||∂Fi/∂xj|| is the Jacobian matrix. 
According to general theory, the system is stable if all 
the eigenvalues of the J(x0) have negative real parts. 
This condition guarantees that any initial  perturbation 
will exponentially decrease with time.15 If at least one 
of eigenvalues has a positive real part then the  system 
is unstable (a more detailed discussion may be found 
in the works12,16 by this author). It should be noted 
that in multidimensional systems, the  conditions 
of Jacobian stability impose a set very stringent 
constraints of high algebraic order (such as Routh-
 Hurwitz and Lyapunov criteria)17 and have very little 
chance to materialize naturally.18 For example, it has 
been shown numerically in19 that multidimensional 
equations of chemical kinetics almost certainly are 
unstable in the Jacobian sense. This conclusion has 
far reaching implications.11 It suggests that observed 
robustness must have much deeper roots than those 
associated with the Jacobian stability. Furthermore, 
the Jacobian analysis of stability provides little guid-
ance regarding the patterns of long term behavior of 
the system. A key concept in studying such behavior 
is the quantity called phase space compressibility, 
χ(t). It is defined as the trace of the time-dependent 
Jacobian matrix

 
χ( ) ( )t t J tii

i

= = ∑Tr ( )
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N
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This quantity is the measure of the rate of relative 
decrease or increase of the phase space volume 
moving with the flow along the system’s trajectories 
in its phase space. If χ(t) . 0 then the trajectories 
initially lying within some small domain, Ω(t|t0), will 
diverge with time, and the distance between them will 
grow to infinity when t → ∞. Such behavior signifies 

high sensitivity to initial conditions, and is equivalent 
to asymptotic dynamic instability. In the opposite 
case, when χ(t) , 0, the phase volume, Ω(t|t0), is 
contracting with time. This means that initially distant 
trajectories become closer to each other and ultimately 
will enter a certain compact set in the phase space to 
stay there forever. This situation is usually referred to 
as asymptotic dynamic stability. If the volume Ω(t|t0), 
is deforming with time uniformly in all directions then 
initially distant trajectories asymptotically approach 
the same limiting trajectory thus forming a limit cycle. 
The concept of asymptotic dynamic stability provides 
an avenue for quantification of robustness. If the system 
is asymptotically stable then knocking the system out 
of its repertoire (trajectory) will have no lasting effect 
because the system is supposed to return back to the 
same asymptotic domain. Note that the concept of 
asymptotic dynamic stability is a concise expression of 
existence of multiple negative feedback loops. On top 
of that, since the limit cycles in asymptotically stable 
systems may be multidimensional and inseparable, 
the concept of asymptotic dynamic stability is also 
a concise, mathematically self-consistent, expression 
of interaction between the feedback loops belonging 
to different dimensions of the system.

Robustness as manifestation  
of multistability
Existence of multiple attracting domains in  complex 
dynamical systems (for brevity, often called 
multistability) provides a mechanistic basis for a 
switch-like behavior in which a system can make 
a sudden jump from one attractor to a drastically 
different attractor under seemingly gradual change 
in stimulus, environmental factors or small random 
perturbations.20 In molecular biology, multistability 
is considered to be an important mechanism of cell 
differentiation.21 As mentioned above, in multidimen-
sional systems, local fixed points almost certainly are 
unstable in the Jacobian sense. However, existence 
of multiple fixed points may drastically change the 
scenario of the system’s behavior: it can travel from 
one fixed point to another thus creating very complex 
but dynamically stable patterns. Such patterns of 
behavior have been experimentally observed in a 
number of biological phenomena; the circadian 
clock is a prominent example.22 Multiplicity of attrac-
tors creates complexity of the behavior and may serve 
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as an indirect measure of the number of alternative 
repertoires available for the system. The key question 
arising in this context is how many attractors may exist 
in the system of interest? Evaluation of the number of 
attractors in multidimensional systems is a difficult 
mathematical task. A notable example amenable to 
direct analytical exploration has been considered in.23 
In this example, dynamics of the system is governed 
by the Lotka-Volterra equation, the mathematical 
model widely used in population dynamics of inter-
acting species24,25

 

dx

dt
x x x i Ni

i i ik i k
k

N

= + =
=

∑ε α ; , .., ,1
1

 (1.6)

where {xi} are the population abundances and {εi}
are the corresponding rates of production. It has been 
demonstrated in this work that existence of multi-
ple attractors is associated with the existence of the 
autocatalytic cycles and can be found through the 
eigenvalues of the interaction matrix, αik. Another 
promising approach has been developed in26 for the 
dynamical systems presented as random Boolean 
(Kauffman) networks. It has been shown that in 
such systems the number of attractors grows with the 
system’s size. Generally, the question of number of 
attractors in a large dynamical system is wide open 
for further inquiry.

Robustness as tolerance  
to variations of structural parameters
Tolerance to perturbation of structural parameters is 
yet another property of dynamical systems that may 
be interpreted as a form of robustness. As an ad hoc 
example of such perturbations, let us recall that in 
complex biochemical systems the kinetic rates are 
temperature-dependent through the Arrhenius factor 
exp(Q/RT), where Q is the caloric effect of reaction, 
R is the universal gas constant, and T is the absolute 
temperature.27 Hence, even moderate variations in 
ambient temperature may cause drastic changes in 
kinetic rates and overall dynamics of the system. 
To formalize this concept, let us suppose that in the 
equation (1.3) governing the system, the structural 
parameters, θ, are subject to some perturbation, δθ. 
Obviously, trajectories of the perturbed system will 
also change, and the question arises how sensitive 

are the solutions to this modification. The core 
quantitative characteristic to reflect this sensitivity is 
the matrix  ∂ ∂Fi k/ θ  (often called sensitivity matrix). 
Given identical initial conditions, the evolution of 
differences between the perturbed and unperturbed 
solutions is described by the equation
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which for sufficiently small perturbations reduces to

 0

( | ) ( / ) ,δ θ δθ= ∂ ∂∑∫
t

i i k k
k

x t F dtθ  (1.8)

Sensitivity analysis proved to be a highly efficient 
instrument in the design of robust engineering systems. 
With the advent of high throughput data gathering 
techniques and computational systems biology, 
the concepts of sensitivity analysis began to gain 
popularity in the analysis of complex biomolecular 
phenomena.28 It should be noted, however, that in 
highly nonlinear systems, even a small change of 
parameters may throw the system into an entirely 
different dynamic regime (the phenomenon known 
as bifurcation).15 High degree of nonlinearity is quite 
typical in the biomolecular world; hence, despite 
obvious usefulness, applicability of the essentially 
linear sensitivity analysis to complex biological 
phenomena may be limited.

Robustness as tolerance  
to random perturbations
Any biological system is functioning in the presence 
of uncontrolled, and mostly unknown, disturbances 
covered by the blanket term noise. There are numerous 
ways of including noise in the system’s dynamics29 
among which the additive model is the simplest and 
intuitively most appealing

 dx/dt = F(x|θ) + ξt, (1.9)

where ξt is a stochastic process. Mathematically 
tractable results may be obtained by transforming 
the stochastic differential equation (1.9) into the 
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 Fokker-Plank equation describing the temporal 
evolution of probabilities of finding the system in a 
certain domain of phase space.30 Quantitatively, the 
vector or time-dependent variances, {σ 2[xi(t)]} may 
serve as a measure of tolerance against random noise: 
the smaller are these variances, the more robust is the 
system. This would mean that the system is function-
ing approximately right even despite the presence of 
uncontrollable disturbances.

Robustness as manifestation  
of functional redundancy
In engineering, functional redundancy is the design 
principle requiring duplication or triplication of 
the modules critically important for reliability of 
the  system. Transplanted into biological context, 
 redundancy is often thought to be a major  contributor 
to biological robustness by enacting the backup 
mechanisms in the essential life-sustaining functions. 
For example, Kitano2 indicates:  “Robustness can be 
enhanced if there are multiple means to achieve a 
specific function, because failure of one of them can 
be rescued by others. Here, I call this mechanism 
‘alternative’, or ‘fail-safe’. This concept encompasses 
redundancy, overlapping function and diversity, as the 
differing degrees of similarity between the various 
alternative means that are available.” Unquestionably, 
redundancy is a pervasive phenomenon on every level 
of biological organization. However, the notion that 
redundancy is always beneficial in terms of robustness 
is not so indubitable. An obvious counterargument is 
that multiplication of operational capabilities would 
require multiplication of all the supporting resources. 
Mother Nature (a.k.a. “evolutionary pressure”) would 
probably want to produce not only reliable but also 
parsimonious designs. Turning again to engineering 
analogy, an aircraft built up to  withstand all possible 
storms and all conceivable equipment failures would 
probably be too heavy, require too much fuel and, as 
a result, be too expensive for beating the competitors 
and staying on the market.  Biological pros and cons 
of redundancy have been the subject of many impor-
tant works.31–35 To keep this paper within a reason-
able size, we limit ourselves by mentioning here only 
several key ideas. A fundamental, and not completely 
resolved, theoretical issue is whether or not biologi-
cal redundancy may be evolutionary stable.36,37 If, for 
example, there are two genes with duplicate  functions, 

then one of them with higher expression rate would 
experience a higher mutation rate, thus having a 
higher tendency to extinction. In large populations of 
rapidly dividing cells, there will be even a tendency 
towards anti-redundancy, that is, an elevated sensi-
tivity to deleterious mutations. On the other hand, 
in small populations of slower growing organisms, 
the evolution towards redundancy may prevail.31 It 
should be noted, that the general term redundancy 
covers a number of distinctly different mechanisms 
and phenomena. Thus, it is possible that a gene is 
engaged in two or more different pathways leading to 
the same terminal metabolite. In this case, a failure in 
one pathway may be compensated by the success in 
the other. It is also possible that there are several func-
tionally similar genes acting independently. A most 
surprising situation may occur when identical results 
are achieved even without functional similar-
ity between the genes, the phenomenon dubbed as 
backup without  redundancy.32 In genomic context, 
the key evidence of redundancy is that the gene  
regulatory system often continues to function nor-
mally even after deletion of the critically important 
genes. Indeed, these gene deletion experiments do 
suggest that perhaps there are the backup genes in 
existence somewhere in the genome.34  However, an 
alternative view is also possible: the genes that seem 
to be non-essential are activated under the extreme 
environmental circumstances or under the condi-
tions not yet studied in the laboratory.38 Essentially, 
this would mean that there is no redundancy. As seen 
from this brief overview, interrelations between bio-
logical robustness and redundancy involve many 
subtle, often poorly understood, issues. Mathematical 
models for these relations are notoriously difficult to 
formulate.31 In our opinion, it would be safe to claim 
that at this time there is no compelling evidence that 
redundancy plays a universally significant role in the 
phenomenon of biological robustness.

Robustness of genetic regulatory 
networks
As an example of application of the above formulated 
concepts, we briefly summarize the results reported 
by this author in.16 Using the nonlinear formalism of 
S-Systems,39 several important facts have been estab-
lished. First, any genetic regulatory network (GRN) 
has at least one point of equilibrium (fixed point). 
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Second, at this point the GRN is unstable in the 
 Jacobian sense. This result is significant. It says that 
the GRN can never reside it a steady state in which all 
the numerous concurrent processes tangled into the 
genome-wide gene expression are perfectly  balanced, 
thus resulting in constancy of all the biochemical 
entities involved. Large spontaneous deviations from 
the point of equilibrium such as backlogs, bottle-
necks, and loss of synchronization are inevitable 
 properties of GRNs. Third, under the fairly general 
 conditions, a GRN may be dynamically asymptoti-
cally  stable. Essentially, the necessary conditions 
stipulate absence of the massively autocatalytic gene 
expressions, that is, the situation when a large number 
of genes require the proteins to serve as transcription 
factors to express the very same genes they originate 
from. Qualitatively, dynamic asymptotic stability 
means that there exists a regime of stable oscillations 
in which all the constituents are perpetually chang-
ing their concentration. If to rule out a fairly exotic 
possibility of chaotic dynamics, this type of behavior 
signifies robustness of genetic regulatory system in 
the sense described above in the Section devoted to 
dynamic stability. Due to very high dimensionality of 
these oscillatory patterns, it is admissible to charac-
terize this type of motion in stochastic terms, as was 
discussed in the works11,19 by this author. It is inter-
esting to mention that, as established in,16 the sign 
of phase space compressibility (1.5), is largely inde-
pendent of the kinetic rates of biochemical reactions 
involved in gene expression; only the topological 
structure of GRN turned out to be crucial. This result 
may be interpreted as a manifestation of robustness in 
the sense of independence on variations of structural 
parameters.

Robustness as Manifestation  
of swarm Intelligence
From the logical standpoint, the considerations of this 
Section are applicable to any network, regardless of 
its physical or biological content; the nodes of the 
network could represent any system, simple or com-
plex, and the links could correspond to interactions 
of any nature. In particular, the cells may be consid-
ered as nodes and the cell-to-cell signaling pathways 
as links. The considerations of robustness are fully 
applicable to this level of systemic representation as 
well. If for example, the genetic regulatory system in 

any of the participant cells becomes unstable, or the 
gene expression process runs into the chaotic mode, 
the system as a whole, that is the network of cells, 
still retains vast resources to maintain its functional 
stability.

However, a fundamentally new emergent prop-
erty appears in large systems where the interactions 
between subunits are complex multifunctional pro-
cesses by themselves. This ability has been termed 
swarm intelligence, which by definition is the orga-
nized behavior of large communities without global 
organizer and without mapping the global behavior 
onto the cognitive/behavioral abilities of the individ-
ual members of community.40 Social insects provide 
a vast universe of astounding examples of elabo-
rate collective strategies in solving routine problems 
and struggling for survival. Importantly, complexity 
of collective behavior of the community as a whole 
does not require its individual members to have any 
extensive analytical tools or even memory on their 
own. Somewhat paradoxically, intelligent individuals 
would have a tendency to develop a community-wide 
information infrastructure and a central supervisory 
authority;41 success of the organization as a whole 
will then strongly depend on the ability of individual 
members to be timely informed and their willingness to 
obey the orders without re-analyzing or re-interpreting 
them. The best example of successes and perils of this 
type of organization is human society. It is quite possi-
ble that communities of individuals acting completely 
within the stimulus-response rules (in terminology 
of,41 the dumb individuals) may be more successful in 
their struggle for survival rather than the communities 
of more intelligent beings. Proof of the principle that 
a large community of dumb  individuals may possess 
the elements of self-organization and swarm intelli-
gence has been vividly demonstrated in.42,43 In these 
works, a group of memoryless micro-robots have been 
programmed to mimic individual behaviors of cock-
roaches. The micro-robots, however, were not hard-
wired to have any informational and analytical tools 
regarding behavior of other robots or general plan 
of action. It has been shown experimentally that this 
community is capable of reproducing some patterns 
of collective behavior  similar to those of real cock-
roaches. An important aspect of swarm intelligence 
is the ability of self-healing and self-repair, as been 
demonstrated by computational experiments with the 
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robotic stem cells.44 Division of labor in communities 
of robots has been studied in.45 The authors point out: 
“The robots we used for our experiments are quite 
simple. They have very limited computational power, 
they do not  communicate with each other and they 
are equipped with simple sensors. The sensors are 
too simple to allow them to build a map or any other 
model of the environment. Nevertheless, we show 
that they are able to cooperate in order to increase the 
efficiency of the group.” A comprehensive review of 
various aspects of swarm intelligence in communities 
of robots and biological entities is given in.46

Powerful impetus to the idea of robotic communi-
ties has been recently given by nanotechnology. If the 
swarms of micro-robots can behave in self- organized 
intelligent manner then why wouldn’t nano-robots? 
Various strategies of utilizing the quorum  sensing in 
various goal-seeking tasks for communities of nano-
robots have been explored in the series of simulation 
experiments.47 Although only the first steps have been 
made in practical implementation of this intriguing 
idea, the results already achieved are impressive. For 
example, Maltzahn et al48 constructed the system in 
which the synthetic biological and nanotechnological 
components communicate in vivo to enhance disease 
diagnostics and delivery of therapeutic agents. In 
these experiments, the swarms typically consisted of 
about one trillion of nanoparticles. It has been shown 
“that communicating nanoparticle systems can be 
composed of multiple types of signaling and receiv-
ing modules, can transmit information through mul-
tiple molecular pathways, can operate autonomously 
and can target over 40 times higher doses of chemo-
therapeutics to tumors than non-communicating con-
trols” (italicized by SR).

The capability of the community of individuals 
devoid of any traces of personal memory or  personal 
intellect to produce some forms of collective mem-
ory and collective intellect seems to be a sort of 
miracle at first sight. Two well known examples 
remind us that it is not so. Communities of neurons 
(nervous cells) form the basis for highly sophisti-
cated human intellect, as well as for the intellect of 
animals.  Meanwhile, the neurons themselves are 
nothing more than comparatively simple stimulus-
response devices with the only capability to transmit 
electrical impulses to other  neurons. It may be right-
fully said that our own intellect, at least in part, is 

the manifestation of swarm intelligence of the com-
munities of neurons. This  paradigm is well captured 
by the mathematical construct of artificial neural net-
work (ANN). The ANN as a whole has the capability 
of collective memory, pattern recognition and deci-
sion making.  However, an individual element of the 
ANN (neuron) is  nothing more than a simple compu-
tational unit governed by a one-dimensional activa-
tion function. In the process of training, the ANN is 
exposed to a series of the input signals (stimuli), and 
the ANN parameters (internal states) are adjusted for 
the best possible prediction of the output. The col-
lective memory and pattern recognition capabilities 
are stored in the entire set of the ANN parameters. A 
similar process is the basis for swarm intelligence of 
the community of the memoryless robots. The ANN 
may be seen as historically the first computational 
algorithm based on the ideas of swarm intelligence. 
This ground-breaking approach has had numerous 
extensions in modern computational  mathematics.  
A number of numerical algorithms for bioinformatics 
have been inspired by the swarm intelligence para-
digm; among them one may find the Particle Swarm 
Optimization,49 Ant Colony Optimization,50 Bee Col-
ony Optimization,51 and others.

Highly sophisticated forms of swarm intelli-
gence have been observed in bacterial communities. 
 Compared to the dumb individuals mentioned above, 
bacteria have at least two advanced features which 
make the behaviors of bacterial communities astound-
ingly rich and elaborate. First, bacteria possess the 
property of genomic plasticity which may be thought 
of as a rudimentary form of internal memory. Second, 
bacterial cells are capable of transferring individual 
genomic traits to their progeny. Social organization 
of microbial communities has been extensively ana-
lyzed in.52 A number of important conclusions have 
been reached in this landmark work. Firstly, the 
bacterial communities possess the form of inherit-
able collective memory and the ability of maintain-
ing self-identity through the mechanisms of signal 
transduction and genomic plasticity.  Secondly, using 
a wide range of bacterium-to-bacterium chemical 
communications and stigmergic sensing of environ-
ment, the bacterial communities are capable of col-
lective decision- making, purposeful alterations of 
the colony structures, recognition and identification 
of other colonies. In essence, a bacterial community 
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as a whole may be seen as a multicellular organism 
with loosely organized cells and a sophisticated form 
of intelligence. It is also important to realize that 
the genomic profiles and epigenetic modifications 
of bacterial subgroups are shaped by their roles and 
positions in the community. This means that bacte-
rial clonal diversity within a colony reflects not sim-
ply the multitude of genomic structures but also the 
division of labor between the subgroups. It should be 
also noted that fancy external architectural forms cre-
ated by the bacterial communities are the direct con-
tinuation of their internal metabolic architecture and 
genomic profiles coherently structured for quorum 
sensing and other forms of cooperation.53

The high level of self-organization observed in 
 colonies of social insects and microbial communities 
gives rise to the concept of superorganism. 
 Superorganism is not simply a complex system or a 
compartmentalized community of individuals with 
functionally distinct modules. The most  fundamental 
property of a superorganism, built upon all other 
systemic properties, is the shared purpose of its 
 existence.54 This shared purpose may coexist with 
rivalry for shared resources between individuals 
or group of individuals within the superorganism. 
Assuming again that there is neither central authority 
which governs the superorganism nor mapping of the 
collective behavior onto the cognitive capabilities of 
individual members, it is admissible to ask: how is 
that possible that a superorganism may achieve its 
purpose despite the internal conflicts, injuries, losses 
and constantly changing environmental conditions? 
The concept of swarm intelligence helps to resolve 
this fundamental issue.

All that is said above is fully applicable to the 
somatic cells. As stated in:53 “Bacteria invented the 
rules for cellular organization.” There is, however, 
an essential difference between the somatic and 
microbial cells pointed out in.41 The somatic cells are 
immobilized in the extracellular matrix and tissue 
thus forming an actual physical network with rela-
tively stable links. In contrast to microbial communi-
ties, which are free to move their members in space, 
the swarm intelligence of the community of somatic 
cells is mostly busy with shaping their internal struc-
tural elements such as gene expression profiles and 
metabolic pathways. Similar to microbial cells, the 
somatic cells possess a number of properties which 

may be interpreted as short-term memory (defined as 
the recording of experience that can modify behav-
ior).55 In particular, a gene network may utilize the 
property of multistability for adaptive response 
through fitness-induced attractor selection.56 All this 
means that a community of somatic cells acts as a 
self-sufficient intelligent being taking care of its own 
survival through cooperative manipulation with their 
internal states.

Attacking the network
Suppose that the task at hand is to inflict fatal dam-
age to a robust network possessing some or all of the 
aforementioned functional capabilities. Depending on 
the network’s structure and self-healing mechanisms, 
the strategies for attack may be quite different.

Static network perspective
In a scale-free network, the probability that a ran-
domly selected node has exactly k links follows 
the law, P(k) ∼ k−γ. For the majority of real network 
topologies, γ is a positive number between 1.5 and 
3.5. This type of probabilistic structure indicates 
that a non-vanishing probability exists that there are 
nodes in the network which have very large num-
ber of links.57 If, for example, γ = 2.5, then, in the 
network with 10,000 nodes, the average number of 
links per node is as small as k  = 1.94, whereas about 
14 nodes will have more than 50 links. These highly 
connected nodes are usually called hubs. An essen-
tial part of the network functionality depends on 
the well-being of the hubs. Scale-free networks are 
comparatively resistant to multiple random attacks. 
However, knocking out even one of its hubs may 
be lethal.14 Scale-free networks are widespread in 
nature and society; commonality of their structure 
lies in the similarity of mechanisms of their evolu-
tionary growth through preferential attachment.57 It 
has been repeatedly demonstrated that many intra-
cellular networks follow the scale-free law; notable 
examples include protein-protein interaction and 
metabolic networks.58 The strategy of attacking 
the scale-free network is quite obvious: the hubs 
should be targeted first. However, it is never known 
in advance which set of nodes do actually serve as 
the hubs. Therefore, as a part of the overall strategy 
for attack, targeting the hubs may be costly and time 
consuming because of the necessity of preliminary 
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reconnaissance for uncovering the network’s topo-
logical structure. In contrast, random attacks do not 
require such  foreknowledge and may eventually be 
more efficient in terms of cost-benefit balance, as 
will be discussed later.

In the exponential networks, P(k) ∼ exp (−γk) for 
large k; therefore, the probability of occurrence of 
hubs is negligible. A characteristic feature of such 
networks is existence of the small worlds, that is, 
comparatively small groups of tightly interconnected 
nodes.59 Due to absence of the high-value targets, ran-
dom attacks is the only reasonable strategy against 
such networks.

The aforementioned strategies are based on a 
purely static vision of the system. Static networks 
do not possess a mechanism of knowing that they are 
under attack, and, figuratively speaking, do not feel 
pain caused by damage to its nodes. In more refined 
terms, this means that neither the considerations of 
dynamical stability, nor the possibility of emergence 
of swarm intelligence, nor the ability of the network 
to respond through reorganizing itself are included in 
the static vision. For example, the success of remov-
ing the leader of a terrorist network may turn out to 
have only a fleeting effect because, after a certain 
period of turmoil, the network may elect a new leader 
and become even stronger through adaptation and 
learning from negative experience.

Nonlinear dynamics perspective
If a complex dynamical system is globally asymp-
totically stable then any limited-time perturbation 
applied to the system will dissipate, and the system, 
sooner or later, will end up within its unique asymp-
totic attractor. In order to modify the functional 
behavior of such a system, the system should be first 
disorganized to the point of becoming chaotic. As 
paradoxical as it may sound, chaotic states are com-
paratively easy to control. It follows from the very 
essence of chaoticity whose hallmark property is high 
sensitivity of the phase space trajectories to the initial 
conditions and governing parameters. This means, in 
particular, that only slight modifications of those may 
completely change the scenario of motion. Moreover, 
it has been established by a number of authors 60(and 
references therein) that a chaotic attractor is usually 
embedded within a dense manifold of stable periodic 

orbits. In order to stabilize chaotic motion, one would 
need to tailor a small time-dependent perturbation to 
push the system towards one of already existing peri-
odic orbits. The first example of this kind has been 
presented in the seminal paper by Ott, Grebogi, and 
Yorke.61 The authors point out: “It is interesting to 
note that if the situation is such that the suggested 
method is practical, then the presence of chaos can be 
a great advantage. The point is that any one of a num-
ber of different orbits can be stabilized, and the choice 
can be made to achieve the best system performance 
among those orbits. If, on the other hand, the attractor 
is not chaotic but is, say, periodic, then small param-
eter perturbations can only change the orbit slightly. 
Basically we are then stuck with whatever system 
performance the stable periodic orbit gives, and we 
have no option for substantial improvement, short of 
making large alterations in the system”. This funda-
mental result has been first established through fairly 
involved theoretical considerations and supported only 
by numerical simulations. Upon publication, there has 
been a concern in the nonlinear dynamics community 
that this result could be primarily of academic inter-
est with no easy way to experimentally demonstrate 
its validity, let alone any practical applications. This 
concern has been quickly dispelled experimentally.62 
The authors summarize their remarkable findings as 
follows: “In conclusion, we have demonstrated the 
first control of chaos in a physical system, using the 
method of Ott, Grebogi, and Yorke. Some advantages 
of this method are the following: (1) no model for the 
dynamics is required; (2) the computations required 
at each iterate are minimal; (3) the required changes 
in the parameter can be quite small; (4) different peri-
odic orbits can be stabilized for the same system in 
the same parameter range; (5) control can be achieved 
even with imprecise measurements of the eigen-
values and eigenvectors; and (6) this method is not 
restricted to periodically driven mechanical systems, 
but extends to any system whose dynamics can be 
characterized by a nonlinear map.” Further develop-
ments expressly demonstrated that the vision outlined 
in61 was truly  prophetic.  Comprehensive review63,64 
cites more than 300  applications of the idea of con-
trollable chaos covering a wide range of disciplines, 
including medical and biological fields. Perhaps, 
the most impressive among them were treatment of 
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cardiac arrhythmia, reduction of the level of chaotic 
oscillations in seasonal epidemics, and controlling 
blood sugar in diabetes (see63,64 for more detail and 
extensive bibliography).

As discussed above, it is quite typical for a com-
plex dynamical network to have multiple attractors, 
the phenomenon often referred to as multistability.65 
If the system resides in a stable state associated with 
some sort of malicious activity then a possible strat-
egy of forcing the system into a more benign regime 
would be moving it to a different steady state. Such 
possibility of controlling complex systems by mov-
ing them between different attractors has been dem-
onstrated in many works; for recent examples and 
review, see.66

Swarm intelligence perspective
As discussed above, a complex system possessing 
the elements of swarm intelligence has the  capability 
of restructuring itself in response to external adverse 
influences. Figuratively speaking, it is capable of 
healing and defending itself. Even though the behav-
iors of individual members of the system may lie 
completely within the realm of simple stimulus-
 response rules, the reaction of a system as a whole 
may be far more complex and much less predictable. 
If a necessity arises to modify or terminate the 
 system’s malicious behavior, two fundamentally dif-
ferent approaches may be undertaken: the system 
may be obliterated or, alternatively, the system may 
be outsmarted. In the latter approach, the  cognitive/
behavioral properties of the network should be 
explored much in the same manner as the communi-
ties of bees, or ants, or fish schools have been studied 
for decades.40,46 Among many systemic character-
izations of the collective behavior, several are of 
uttermost importance. These are the division of labor, 
collective memory, and quorum sensing. Obviously, 
these characteristics cannot be merely reduced to the 
quantification of biological or clonal diversity (which 
are rightfully regarded to be the driving forces of 
evolution, eg,67) It should be also noted that in popu-
lations counting in millions, it would not make much 
sense to launch a fight against individual members of 
the community. Likewise, it may be futile to attach 
any special significance to individual members or 
individual traits in their ability to be representative 

of the behavior of the entire community (eg, serve as 
biomarkers). A successful strategy against a network 
possessing a collective faculty of swarm intelligence 
would require understanding the vital resources of 
the network’s existence and driving forces of its self-
defense.

Tumor as a Robust Intelligent 
superorganism
Among the many theories of cancer onset and progres-
sion, two approaches may be regarded as somewhat 
diametrically opposite, with innumerable variations 
and flavors between them. These are the Somatic 
Mutation Theory (SMT) and the Tissue Organization 
Field Theory (TOFT). The essence of the SMT is that 
cancer is derived from a single somatic cell that has 
successively accumulated multiple DNA mutations, 
and that those mutations occur on genes that control 
cell proliferation and the cell cycle.68 In SMT, the neo-
plastic lesions that destroy normal tissue architecture 
are the results of the DNA-level events. Conversely, 
according to the TOFT, carcinogenesis is primarily 
a problem of the tissue organization: carcinogenic 
agents (environmental chemicals, inflammation, 
viruses, etc.) destroy the normal tissue architecture 
thus disrupting the cell-to-cell signaling pathways, 
inflicting damage to intracellular homeostasis and 
compromising the genomic integrity. In TOFT, the 
DNA mutations are the result, and not the cause, of 
the tissue-level events.68 Numerous hybrid approaches 
(eg,69 and references therein) maintain, generally, that 
alterations in the tissue microenvironment contribute 
to selective clonal expansion of mutated cells thus 
forming a positive feedback mechanism for tumor 
growth and proliferation. It is becoming increasingly 
clear that carcinogenesis is a systemic phenomenon 
transversing the entire hierarchy of biological organi-
zation from the level of gene expression to the levels 
of tissues and organs.70 It is highly unlikely that it will 
ever be possible to single out any element or orga-
nizational level in this system that bears a primary 
responsibility for cancer onset and progression. This 
fundamental complexity and inseparability naturally 
leads to the notion that tumors are in fact the self-
sustaining and self-motivating superorganisms.71

As mentioned above, the most fundamental prop-
erty of a superorganism, built upon all other systemic 
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properties, is the shared purpose of its existence.54 This 
shared purpose should not be mistaken for a mystical 
life force inherent in all living things (although, the 
author is not inclined to flatly dismiss its existence; 
see72,73). As discussed above, swarm intelligence, 
with division of labor, collective memory, learn-
ing from experience, quorum sensing and sensing 
of environment being its basic aspects, may emerge 
in the communities of inanimate dumb individuals 
just as a result of comparatively simple mechanistic 
 interactions. No individual intelligence is required for 
forming the collective swarm intelligence.

Numerous observations confirm the notion that 
a cancer tumor may be regarded as a society of 
cells possessing the faculty of swarm intelligence. 
One of the important aspects of swarm intelli-
gence is  adaptivity which is a form of learning from 
 experience. In literature, in attempts to conceptual-
ize this complex phenomenon, there is a reductionist 
 tendency to associate adaptivity with multiple layers 
of negative feedback loops.74 For example, on the 
cellular level, tumor overexpression of MDM2 may 
cause degradation of P53 thus blocking apoptosis. 
Hence, it may be said that the MDM2-P53 interac-
tion functions as a negative feedback loop for main-
taining optimal P53 level.75 Examples of the kind are 
too numerous to be discussed here.76 On the level 
of a tumor as a whole, multiple feedback loops are 
activated between the tumor cells and extracellu-
lar matrix, vasculature, other tumor cells and tumor 
microenvironment. Each individual feedback con-
trol seems to act as a blind and automatic stimulus-
response mechanism. It is obvious, however, that 
the entire system cannot succeed in fulfilling its task 
unless these individual controls are working coher-
ently, sharing a common goal. Observed astounding 
coherence between all the innumerable elementary 
processes comprising tumor adaptivity allows one to 
see tumor as a  separate organ,77,78 and to talk about its 
defensive tactics.3  Obviously, these words are more 
than simple metaphors. Each neoplasm has to build 
up its specific self-defensive tactics in the process of 
evolutionary growth and learning from experience 
during its lifetime. Fundamentally, such capabilities 
are nothing else than manifestations of swarm intel-
ligence in the  community of tumor cells. It is, there-
fore, admissible to hypothesize that, when developing 
therapeutic  strategies against cancer, one needs to take 

into consideration not only the tumor clonal diver-
sity,79 and not only the existence of blind automatic 
 feedback loops, but also to recognize that the enemy is 
 intelligent, capable of  discerning the weapon applied 
against it and mounting a counteroffensive.

Acquired chemoresistance as a 
Manifestation of swarm Intelligence
It has been long recognized that cancer cells, after the 
fleeting inhibitory effect of a chemotherapeutic agent, 
may develop the capabilities of resistance to treatment. 
Numerous examples of the kind pertaining to breast 
cancer are given in.80 In particular, these authors 
indicate: “Interestingly, some patients have an early 
recurrence even though they have a tumor with good 
prognostic features and at a favorable stage. These 
recurrences have been explained by the existence of 
certain cellular characteristics at the molecular level 
that make the tumor cells resistant to therapy.” And 
further: “No tumor response is observed in some cases 
despite the use of appropriate therapy. The tumor con-
tinues growing during treatment in such cases, a phe-
nomenon called primary resistance to therapy.” These 
capabilities of evading attack are interchangeably 
termed adaptivity, or chemoresistance, or acquired 
resistance, and, regardless of the name, all of them 
are the manifestations of robustness of cancer cells, 
both individually and collectively. High probability 
of relapsing after a certain period of apparent success 
has led to the necessity of distinguishing between the 
response rate and the success rate in chemotherapy. 
In recent comprehensive review,76 numerous mecha-
nisms and various aspects of chemoresistance have 
been elucidated. The authors point out that: “to over-
come the toxic effects of curative compounds, can-
cer cells have to continuously develop the capability 
to implement and strengthen normal physiological 
functions or to mature de novo mechanisms of resis-
tance against single selected compounds or multiple 
agents, often apparently unrelated. Nearly any type of 
chemoresistance is a multifactorial process  involving 
induction of drug-detoxifying mechanism, quanti-
tative and qualitative modification of drug targets, 
arrest of cell cycle, regulation of DNA replication or 
reparation mechanisms, and modulation of apopto-
sis. These modifications are acquired in response to a 
selection pressure.” It should be noted, however, that 
even a detailed description of a mechanism is far from 
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being an explanation of how and why this mechanism 
comes to existence. Furthermore, it is not sufficient 
to just describe these individual  mechanisms; it is 
equally important to comprehend how all the bio-
chemically disparate processes belonging to different 
time scales, to different cellular compartments and to 
different cell subpopulations may come to synergy 
and coherent collaboration. The concept of  selection 
pressure used in the above excerpt can hardly be rec-
ognized as an explanation of the chemoresistance 
without falling into the nominal fallacy of confusing 
naming with explaining. The concept of selection (or 
evolutionary) pressure is applicable only to the popu-
lations of cells (including their current generations 
and progeny), rather than to individual cells. In order 
to acquire evolutionary advantages, the  cancer cell 
population should not only accumulate a rich arse-
nal of inheritable mechanisms of resistance, but also 
develop the ways of their coherent interaction. This 
means that the internal mechanisms of individual 
cells should co-evolve in consistency with the shared 
goals of the entire cell population. This class of evo-
lutionary changes is in fact very fast: its characteristic 
times are of the order of the lifespan of a tumor. The 
concept of swarm intelligence, well substantiated the-
oretically, richly supported by observations and dem-
onstrated experimentally, is the key to understanding 
the emergent property of chemoresistance.

Futility of High-Specificity 
Therapeutic Targeting
As mentioned above, a troubling aspect of chemoresis-
tance is that it represents an integrated cellular response 
in which numerous individual pathways of resistance 
are acting synergistically. In,81 this integrated response 
is summarized as follows: “Resistance pathways are 
interdependent or interconnected and affect the deliv-
ery, stability and function of anticancer drugs. It is 
however worth noting that the precise contribution of 
specific resistance pathways to anticancer drug effi-
cacy in specific cancers remains to be fully elucidated. 
It is likely that in many cases, resistance may arise 
through multiple mechanisms that develop in paral-
lel. We have generated a solid understanding of many 
of the main pathways and the respective relevance of 
these in the resistant phenotype in vivo continues to 
engender lively debate. These issues urgently need to 
be addressed to shape or prioritize future strategies 

designed to overcome this considerable impediment 
to a major form of cancer treatment” (italicized by 
SR). Even those mechanisms of chemoresistance that 
are  relatively well established are still open to many 
unresolved questions. For example, a crucial role of 
the P53 protein in establishing balance between the 
cell cycle arrest and apoptosis has been very well 
understood. However, an exact way of how the correct 
balance between the cell cycle arrest and programmed 
death is established is still unknown. Being a highly 
connected node in the gene regulatory network, the 
TP53 gene is involved in many activities simultane-
ously. Due to this high sensitivity, chemotherapeutic 
targeting the TP53 may cause many effects, wanted 
and unwanted.82 Another crucial issue is the delivery 
of a chemopreventive agent into the cell. At this time, 
the mechanism by which the drug is taken into the cell 
remains largely unknown.83 Examples of the kind are 
virtually endless.

Taking into consideration the rich history of fail-
ures in targeting individual pathways,84 and given the 
fact that perhaps only a small part of them has been 
yet discovered, it does not require much imagination 
to hypothesize that targeting individual pathways 
may never be entirely successful. As in a battle of 
an army against other army, an integrated and highly 
organized defense requires an equally organized inte-
grated assault. Contrary to this most obvious proposi-
tion, the philosophy of magic bullet and one gene, one 
drug paradigm remains the prevalent modus operandi 
in biomarker discovery and drug design. The emerg-
ing field of network biology and  network medicine 
provides some clues in which direction to proceed 
to overthrow chemoresistance.12,85–87 As  discussed 
above in Section “Attaking the network”, and as 
convincingly demonstrated in,88 “multiple weak 
hits confuse complex system”. In this work, various 
attack strategies have been tested using the E.coli  
and S.cerevisiae regulatory networks as examples. 
A notable result is that even partial attenuation of a 
small number of nodes may produce a larger effect 
on the network structural integrity than complete 
elimination of a single high value target. Translated 
into the language of pharmacology, this means that 
a high- affinity drug which completely knocks out a 
target may have a lesser effect than multiple drugs 
designed to attenuate certain nodes but not knock 
them out. Relative success of multitarget drugs such 
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as aspirin, Gleevec and other NSAIDs in treating a 
wide range of  diseases may serve as an indirect cor-
roboration of these conclusions.89

The concept of swarm intelligence opens new 
avenues in therapeutic targeting and drug design. In 
particular, disruption of quorum sensing has recently 
come into focus as a key reason for the tissue break 
down under the assault of cancer cells.90 These authors 
hypothesize that “cancer initiation is driven by dis-
ruption of the quorum sensing mechanism, either by 
genetic mutation, complying with current notion of 
cancer evolution, or purely by the environment, genetic 
mutations being only a side-effect of excessive prolif-
eration.” In the detailed review,91 disruption of quorum 
sensing is regarded to be a key culprit in ovarian can-
cer metastatic colonization. These authors indicate that 
“quorum sensing provide a unifying and testable model 
for many long-observed behaviors of metastatic cells.”

conclusion
In his recent presidential address to the American 
Society of Clinical Oncology, Dr. G. Sledge said: 
“Genomic chaos forms the basis for the ‘smart’ 
tumors. These tumors aren’t hard targets, because 
we haven’t found a single ‘magic bullet.’ There will 
be no ‘magic bullets’ for these tumors, because they 
don’t have a single driving mutation: we need to think 
in terms of a ‘magic shotgun,’ loaded with pellets 
aimed at multiple targets in multiple pathways”.92 It 
is the author’s view that the words ‘smart tumor’ used 
above are not simply a metaphor or an eloquent figure 
of speech. The tumors are ‘smart’ in a more direct 
and literal sense: they possess the property of swarm 
intelligence and are capable of self-organizing, self-
healing and self-defending. And this is why a ‘magic 
shotgun’ may not be much more successful than a 
‘magic bullet.’ An intelligent enemy requires a more 
intelligent approach.

Acknowledgments
It is with great pleasure that the author expresses his 
gratitude to Dr. P. Prorok of the National Cancer Insti-
tute, Division of Cancer Prevention, for valuable help 
in preparation of this manuscript.

Disclosures
Author(s) have provided signed confirmations to the 
publisher of their compliance with all applicable legal 

and ethical obligations in respect to declaration of 
conflicts of interest, funding, authorship and contribu-
torship, and compliance with ethical requirements in 
respect to treatment of human and animal test subjects. 
If this article contains identifiable human subject(s) 
author(s) were required to supply signed patient consent 
prior to publication. Author(s) have confirmed that the 
published article is unique and not under consideration 
nor published by any other publication and that they 
have consent to reproduce any copyrighted material. 
The peer reviewers declared no conflicts of interest.

References
 1. Stelling J, Sauer U, Szallasi Z, Doyle FJ III, Doyle J. Robustness of cellular 

functions. Cell. 2004;118:675.
 2. Kitano H. Biological robustness. Nat Rev Genet. 2004;5:826.
 3. Kitano H. Cancer robustness: tumour tactics. Nature. 2003;426:125.
 4. Kitano H. A robustness-based approach to systems-oriented drug design. 

Nat Rev Drug Discov. 2007;6:202.
 5. Csermely P, Agoston V, Pongor S. The efficiency of multi-target drugs: the 

network approach might help drug design. Trends Pharmacol Sci. 2005; 
26:178.

 6. Thomas R, D’Ari R. Biological Feedback. CRC Press; 1990.
 7. Huang Y, Tienda-Luna IM, Wang Y. A survey of statistical models for 

reverse engineering gene regulatory networks, IEEE signal. Process Mag. 
2009;26:76.

 8. Ideker TE. Network genomics, systems biology, Springer, Berlin.  Heidelberg. 
2007:89–115.

 9. Newman MEJ. The structure and function of complex networks. SIAM 
Review. 2003;45:167.

 10. Strogatz S. Nonlinear dynamics and chaos: with applications to physics, 
biology, chemistry and engineering. Springer-Verlag. 1994.

 11. Rosenfeld S. Why do high-dimensional networks seem to be stable?-A 
reflection on stochasticity of dynamically unstable nonlinear systems, In: 
Gauges R, Kummer U, Pahle J, Willy P, eds. Fifth workshop on computation 
of biochemical pathways and genetic networks, university of Heidelberg. 
Heidelberg. 2008:101–12.

 12. Rosenfeld S. Mathematical descriptions of biochemical networks: Stability, 
stochasticity, evolution. Prog Biophys Mol Biol. 2011.

 13. Albert R, Jeong H, Barabasi AL. Error and attack tolerance of complex net-
works. Nature. 2000;406:378.

 14. Latora V, Marchiori M. How the science of complex networks can help 
developing strategies against terrorism. 2004:69–75.

 15. Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and 
bifurcations of vector fields. Springer. 2002.

 16. Rosenfeld S. Characteristics of transcriptional activity in nonlinear dynam-
ics of genetic regulatory networks. Gene Regul Syst Bio. 2009;3:159.

 17. Gantmacher FR. Applications of the theory of matrices, interscience, NY. 
1959.

 18. May RM. Will a large complex system be stable? Nature. 1972;238:413.
 19. Rosenfeld S. Origins of stochasticity and burstiness in high-dimensional 

biochemical networks, EURASIP. J Bioinform Syst Biol. 2009:362309.
 20. Beisner BE, Haydon DT, Cuddington K. Alternative stable states in ecology. 

Frontiers in Ecology and Environment. 2003;1:376.
 21. Laurent M, Kellershohn N. Multistability: a major means of differentia-

tion and evolution in biological systems. Trends Biochem Sci. 1999;24: 
418.

 22. Goldbeter A. Computational approaches to cellular rhythms. Nature. 2002; 
420:238.

 23. Jain S, Krishna S. Graph theory and the evolution of autocatalitic networks. 
In: Bornholdt S, Shuster HG, eds. Handbook of graphs and networks: from 
the genome to the internet. Wiley-VCH. 2003;356–95.

http://www.la-press.com


Biomolecular self-defense

Gene Regulation and Systems Biology 2011:5 103

 24. Ikeda M, Siljak DD. Lotka-volterra equations: decomposition, stability and 
structure. J Math Biology. 1980;9:65.

 25. Hernanades-Bermejo B, Fairen V. Lotka-volterra representation of general 
nonlinear systems. Math Biosci. 1997;140:1.

 26. Samuelsson B, Troein C. Superpolynomial growth in the number of attrac-
tors in Kauffman networks. Phys Rev Lett. 2003;90:098701.

 27. Levin RD. Molecular Reaction Dynamics, Cambridge University Press; 
2005.

 28. Stelling J, Gilles ED, Doyle FJ III. Robustness properties of circadian clock 
architectures. Proc Natl Acad Sci U S A. 2004;101:13210.

 29. Arnold L. Qualitative Theory of stochastic non-linear systems. In: Arnold L,  
Lefever R, eds, stochastic nonlinear systems, Springer-Verlag,  Berlin, 
 Heidelberg, New York, Tokyo. 1981:86–99.

 30. Gardiner CW. Handbook of stochastic methods: for physics, chemistry and 
the natural sciences. Springer-Verlag. 1983.

 31. Krakauer DC, Plotkin JB. Redundancy, antiredundancy, and the robustness 
of genomes. Proc Natl Acad Sci U S A. 2002;99:1405.

 32. Li J, Yuan Z, Zhang Z. The cellular robustness by genetic redundancy in 
budding yeast. PLoS Genet. 2010;6:e1001187.

 33. Pasek S, Risler JL, Brezellec P. The role of domain redundancy in genetic 
robustness against null mutations. J Mol Biol. 2006;362:184.

 34. Wagner A. Distributed robustness versus redundancy as causes of muta-
tional robustness. Bioessays. 2005;27:176.

 35. Wagner A, Wright J. Alternative routes and mutational robustness in com-
plex regulatory networks. Biosystems. 2007;88:163.

 36. Brookfield J. Can genes be truly redundant? Curr Biol. 1992;2:553.
 37. Brookfield JF. Genetic redundancy. Adv Genet. 1997;36:137.
 38. Papp B, Pal C, Hurst LD. Evolution of cis-regulatory elements in duplicated 

genes of yeast. Trends Genet. 2003;19:417.
 39. Voit EO. Canonical nonlinear modeling. S-system approach to understand-

ing complexity. Van Norstand Reinhold N Y. 1991.
 40. Garnier S, Gautrails J, Theraulas G. The biological principles of swarm 

intelligence. Swarm Intelligence. 2007;1:3.
 41. Seeley TD. When is self-organization used in biological systems? Biol Bull. 

2002;202:314.
 42. Garnier S, et al. The embodiment of cockroach aggregation behavior in a 

group of micro-robots. Artif Life. 2008;14:387.
 43. Garnier S, et al. Aggregation behavior as a source of collective decision in a 

group of cockroach-like-robots, advances in artificial life. Lecture Notes in 
Computer Science. 2005:169–78.

 44. Rubenstein M, Sai Y, Chuong C, Shen W. Regenerative patterning in Swarm 
robots: mutual benefits of research in robotics and stem sell biology. The 
International Journal of Developmental Biology. 2009;53:869.

 45. Labella T, Dorigo M, Deneubourg JL. Division of labor in a group of robots 
inspired by ants’ foraging behavior. ACM Transactions on Autonomous and 
Adaptive Systems. 2006;1:4.

 46. Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence: from natu-
ral to artificial systems, Oxford University Press, New York Oxford;  
1999.

 47. Chandrasekaran S, Hougen D. Swarm intelligence for cooperation of bio-
nano robots using quorum sensing, BMN ′06, San Francisco, CA, USA. 
2006:15–8.

 48. Maltzahn G, et al. Nanoparticles that communicate in vivo to amplify tumor 
targeting. Nature Naterials. 2011;10:545.

 49. Kiranyaz S, Ince T, Yildirim A, Gabbouj M. Evolutionary artificial neural 
networks by multi-dimensional particle swarm optimization. Neural Netw. 
2009;22:1448.

 50. Shmygelska A, Hoos HH. An ant colony optimisation algorithm for the 2D 
and 3D hydrophobic polar protein folding problem, BMC. Bioinformatics. 
2005;6:30.

 51. Karaboga D, Basturk B. A powerful and efficient algorithm for numerical 
function optimization: artificial bee olony (ABC) algorithm. J Glob Optim. 
2007;39:459.

 52. Ben-Jacob E, Becker I, Shapira Y, Levine H. Bacterial linguistic communi-
cation and social intelligence. Trends Microbiol. 2004;12:366.

 53. Bassler BL. How bacteria talk to each other: regulation of gene expression 
by quorum sensing. Curr Opin Microbiol. 1999;2:582.

 54. Queller DC, Strassmann JE. Beyond society: the evolution of organismality. 
Philos Trans R Soc Lond B Biol Sci. 2009;364:3143.

 55. Morimoto BH, Koshland DE Jr. Short-term and long-term memory in single 
cells. FASEB J. 1991;5:2061.

 56. Kashiwagi A, Urabe I, Kaneko K, Yomo T. Adaptive response of a gene 
 network to environmental changes by fitness-induced attractor selection. 
PLoS ONE. 2006;1:e49.

 57. Barabasi AL, Albert R. Emergence of scaling in random networks. Science. 
1999;286:509.

 58. Albert R. Scale-free networks in cell biology. J Cell Sci. 2005;118:4947.
 59. Strogatz SH. Exploring complex networks. Nature. 2001;410:268.
 60. Grebogi C, Ott E, Yorke JA. Unstable periodic orbits and the dimensions of 

multifractal chaotic attractors. Phys Rev A. 1988;37:1711.
 61. Ott E, Grebogi C, Yorke JA. Controlling chaos. Phys Rev Lett. 1990;64: 

1196.
 62. Ditto WL, Rauseo SN, Spano ML. Experimental control of chaos. Phys Rev 

Lett. 1990;65:3211.
 63. Andrievskii B, Fradkov A. Control of chaos: methods and applications. 

part 1. methods. Automation and Remote Control. 2003;64:673.
 64. Andrievskii B, Fradkov A. Control of chaos: methods and applications. 

part 2. applications. Automation and Remote Control. 2004;65:505.
 65. Feudel U, Grebogi C. Multistability and the control of complexity. Chaos. 

1997;7:597.
 66. Goswami BK, et al. Control of stochastic multistable systems:  experimental 

demonstration. Phys Rev E Stat Nonlin Soft Matter Phys. 2009;80:016211.
 67. Shibata D. Clonal diversity in tumor progression. Nat Genet. 2006;38:402.
 68. Sonnenschein C, Soto AM. Theories of carcinogenesis: an emerging 

 perspective. Semin Cancer Biol. 2008.
 69. Laconi E. The evolving concept of tumor microenvironments. Bioessays. 

2007;29:738.
 70. Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the 

microenvironment in restraining cancer progression. Nat Med. 2011;17:320.
 71. Grunewald TG, Herbst SM, Heinze J, Burdach S. Understanding tumor het-

erogeneity as functional compartments—superorganisms revisited. J Transl 
Med. 2011;9:79.

 72. Dunne BJ, Jahn RG. Consciousness, information, and living systems. Cell 
Mol Biol. (Noisy. -le-grand) 2005;51:703.

 73. Gates E. Methods of Research and Importance of Cellular Psychology. The 
American Therapist. 1895;4:157.

 74. Kitano H. Cancer as a robust system: implications for anticancer therapy. 
Nat Rev Cancer. 2004;4:227.

 75. Lev Bar-Or R, et al. Generation of oscillations by the p53-Mdm2 feed-
back loop: a theoretical and experimental study. Proc Natl Acad Sci U S A. 
2000;97:11250.

 76. Fodale V, Pierobon M, Liotta L, Petricoin E. Mechanism of cell  adaptation:  
when and how do cancer cells develop chemoresistance? Cancer J. 2011; 
17:89.

 77. Radisky D, Hagios C, Bissell MJ. Tumors are unique organs defined by 
abnormal signaling and context. Semin Cancer Biol. 2001;11:87.

 78. Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that 
interface with the entire organism. Dev Cell. 2010;18:884.

 79. Merlo LM, et al. A comprehensive survey of clonal diversity mea-
sures in Barrett’s esophagus as biomarkers of progression to esophageal 
 adenocarcinoma. Cancer Prev Res (Phila). 2010;3:1388.

 80. Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of 
resistance to systemic therapy in patients with breast cancer. Adv Exp Med 
Biol. 2007;608:1.

 81. Mellor HR, Callaghan R. Resistance to chemotherapy in cancer: a complex 
and integrated cellular response. Pharmacology. 2008;81:275.

 82. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000; 
408:307.

 83. Longley DB, Johnston PG. Molecular mechanisms of drug resistance. 
J Pathol. 2005;205:275.

 84. Mukherjee S. The Emperor of all maladies: a biography of cancer.  Scribner. 
2011.

 85. Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-based classification 
of breast cancer metastasis. Mol Syst Biol. 2007;3:140.

http://www.la-press.com


publish with Libertas Academica and 
every scientist working in your field can 

read your article 

“I would like to say that this is the most author-friendly 
editing process I have experienced in over 150 

publications. Thank you most sincerely.”

“The communication between your staff and me has 
been terrific.  Whenever progress is made with the 
manuscript, I receive notice.  Quite honestly, I’ve 
never had such complete communication with a 

journal.”

“LA is different, and hopefully represents a kind of 
scientific publication machinery that removes the 

hurdles from free flow of scientific thought.”

Your paper will be:
• Available to your entire community 

free of charge
• Fairly and quickly peer reviewed
• Yours!  You retain copyright

http://www.la-press.com

Rosenfeld

104 Gene Regulation and Systems Biology 2011:5

 86. Pawson T, Linding R. Network medicine. FEBS Lett. 2008;582:1266.
 87. Barabasi AL. Network medicine—from obesity to the “diseasome”. N Engl 

J Med. 2007;357:404.
 88. Agoston V, Csermely P, Pongor S. Multiple weak hits confuse complex 

 systems: a transcriptional regulatory network as an example. Phys Rev E 
Stat Nonlin Soft Matter Phys. 2005;71:051909.

 89. Hopkins AL. Network pharmacology: the next paradigm in drug discovery. 
Nat Chem Biol. 2008;4:682.

 90. Agur Z, et al. Disruption of a Quorum Sensing mechanism triggers 
 tumorigenesis: a simple discrete model corroborated by experiments in 
mammary cancer stem cells. Biol Direct. 2010;5:20.

 91. Hickson J, et al. Societal interactions in ovarian cancer metastasis:  
a  quorum-sensing hypothesis. Clin Exp Metastasis. 2009;26:67.

 92. Goldberg P. Prepare for tsunami of genomic information, sledge urges in 
ASCO presidential address. The Cancer Letter. 2011;37:1.

http://www.la-press.com
http://www.la-press.com

