Cancer Informatics 2014:Suppl. 3 1-6
Original Research
Published on 15 Oct 2014
DOI: 10.4137/CIN.S14035
Because of the complexity of cervical cancer prevention guidelines, clinicians often fail to follow best-practice recommendations. Moreover, existing clinical decision support (CDS) systems generally recommend a cervical cytology every three years for all female patients, which is inappropriate for patients with abnormal findings that require surveillance at shorter intervals. To address this problem, we developed a decision tree-based CDS system that integrates national guidelines to provide comprehensive guidance to clinicians. Validation was performed in several iterations by comparing recommendations generated by the system with those of clinicians for 333 patients. The CDS system extracted relevant patient information from the electronic health record and applied the guideline model with an overall accuracy of 87%. Providers without CDS assistance needed an average of 1 minute 39 seconds to decide on recommendations for management of abnormal findings. Overall, our work demonstrates the feasibility and potential utility of automated recommendation system for cervical cancer screening and surveillance.
PDF (1.41 MB PDF FORMAT)
RIS citation (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)
Supplementary Files 1 (870.22 KB ZIP FORMAT)
BibTex citation (BIBDESK, LATEX)
PMC HTML
This is the first time for us to submit a manuscript to Cancer Informatics. We thank the peer reviewers for their insightful comments, which have improved our manuscript markedly. We were pleased to find that the staff were extremely helpful and kept us informed of the progress of the submission step-by-step. Our experience with Cancer Informatics has been tremendous. Thank you very much!
Facebook Google+ Twitter
Pinterest Tumblr YouTube