Publication Date: 18 Nov 2014
Type: Review
Journal: Cancer Informatics
Citation: Cancer Informatics 2014:Suppl. 7 19-25
doi: 10.4137/CIN.S16348
MicroRNAs (miRNAs) are small regulatory RNAs that play key gene-regulatory roles in diverse biological processes, particularly in cancer development. Therefore, inferring miRNA targets is an essential step to fully understanding the functional properties of miRNA actions in regulating tumorigenesis. Bayesian linear regression modeling has been proposed for identifying the interactions between miRNAs and mRNAs on the basis of the integrated sequence information and matched miRNA and mRNA expression data; however, this approach does not use the full spectrum of available features of putative miRNA targets. In this study, we integrated four important sequence and structural features of miRNA targeting with paired miRNA and mRNA expression data to improve miRNA-target prediction in a Bayesian framework. We have applied this approach to a gene-expression study of liver cancer patients and examined the posterior probability of each miRNA–mRNA interaction being functional in the development of liver cancer. Our method achieved better performance, in terms of the number of true targets identified, than did other methods.
PDF (718.24 KB PDF FORMAT)
RIS citation (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)
BibTex citation (BIBDESK, LATEX)
PMC HTML
This is the first time for us to submit a manuscript to Cancer Informatics. We thank the peer reviewers for their insightful comments, which have improved our manuscript markedly. We were pleased to find that the staff were extremely helpful and kept us informed of the progress of the submission step-by-step. Our experience with Cancer Informatics has been tremendous. Thank you very much!
Facebook Google+ Twitter
Pinterest Tumblr YouTube