Publication Date: 16 Apr 2013
Type: Original Research
Journal: Gene Regulation and Systems Biology
Citation: Gene Regulation and Systems Biology 2013:7 71-83
doi: 10.4137/GRSB.S11783
Among 36 differentially-expressed genes during growth in longissimus muscle (LM) of Angus steers, Yin Yang 1 (YY1) had the most relationships with other genes including some associated with adipocyte differentiation. The objective of this study was to examine the effect of nutritional management on mRNA expression of YY1 along with its targets genes PPARG, GTF2B, KAT2B, IGFBP5 and STAT5B. Longissimus from Angus and Angus × Simmental steers (7 total/treatment) on early weaning plus high-starch (EWS), normal weaning plus starch creep feeding (NWS), or normal weaning without starch creep feeding (NWN) was biopsied at 0, 96, and 240 days on treatments. Results suggest that YY1 does not exert control of adipogenesis in LM, and its expression is not sensitive to weaning age. Among the YY1-related genes, EWS led to greater IGFBP5 during growing and finishing phases. Pro-adipogenic transcriptional regulation was detected in EWS due to greater PPARG and VDR at 96 and 240 d vs. 0 d. GTF2B and KAT2B expression was lower in response to NWS and EWS than NWN, and was most pronounced at 240 d. The increase in PPARG and GTF2B expression between 96 and 240 d underscored the existence of a molecular programming mechanism that was sensitive to age and dietary starch. Such response partly explains the greater carcass fat deposition observed in response to NWS.
PDF (2.07 MB PDF FORMAT)
RIS citation (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)
BibTex citation (BIBDESK, LATEX)
PMC HTML
Publishing in Gene Regulation and Systems Biology was a very positive experience. I was impressed by the fast and uncomplicated submission process as well as the clear and professional peer review process which helped to improve the manuscript. The Libertas Academica team was very patient and helpful. I would definitely recommend the journal to other colleagues in the field!
Facebook Google+ Twitter
Pinterest Tumblr YouTube