Close
Help




JOURNAL

Biomedical Informatics Insights

Using Ensemble Models to Classify the Sentiment Expressed in Suicide Notes

Submit a Paper


Biomedical Informatics Insights 2012:5 (Suppl. 1) 77-85

Original Research

Published on 30 Jan 2012

DOI: 10.4137/BII.S8931


Further metadata provided in PDF



Sign up for email alerts to receive notifications of new articles published in Biomedical Informatics Insights

Abstract

In 2007, suicide was the tenth leading cause of death in the U.S. Given the significance of this problem, suicide was the focus of the 2011 Informatics for Integrating Biology and the Bedside (i2b2) Natural Language Processing (NLP) shared task competition (track two). Specifically, the challenge concentrated on sentiment analysis, predicting the presence or absence of 15 emotions (labels) simultaneously in a collection of suicide notes spanning over 70 years. Our team explored multiple approaches combining regular expression-based rules, statistical text mining (STM), and an approach that applies weights to text while accounting for multiple labels. Our best submission used an ensemble of both rules and STM models to achieve a micro-averaged F1 score of 0.5023, slightly above the mean from the 26 teams that competed (0.4875).



Downloads

PDF  (1.22 MB PDF FORMAT)

RIS citation   (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)

BibTex citation   (BIBDESK, LATEX)

XML

PMC HTML


Sharing


What Your Colleagues Say About Biomedical Informatics Insights
The publication process was efficient and well-organized. I am pleased with my decision to submit my manuscript to Biomedical Informatics Insights and highly recommend others to submit their work to the journal.
Dr Mindy Ross (University of California, San Diego, CA, USA)
More Testimonials

Quick Links


New article and journal news notification services
Email Alerts RSS Feeds
Facebook Google+ Twitter
Pinterest Tumblr YouTube