Close
Help




JOURNAL

Biomarker Insights

Stem Cells and Progenitor Cells for Tissue-Engineered Solutions to Congenital Heart Defects

Submit a Paper


Biomarker Insights 2015:Suppl. 1 139-146

Review

Published on 26 Aug 2015

DOI: 10.4137/BMI.S20058


Further metadata provided in PDF



Sign up for email alerts to receive notifications of new articles published in Biomarker Insights

Abstract

Synthetic patches and fixed grafts currently used in the repair of congenital heart defects are nonliving, noncontractile, and not electrically responsive, leading to increased risk of complication, reoperation, and sudden cardiac death. Studies suggest that tissue-engineered patches made from living, functional cells could grow with the patient, facilitate healing, and help recover cardiac function. In this paper, we review the research into possible sources of cardiomyocytes and other cardiac cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, adipose-derived stem cells, umbilical cord blood cells, amniotic fluid-derived stem cells, and cardiac progenitor cells. Each cell source has advantages, but also has technical hurdles to overcome, including heterogeneity, functional maturity, immunogenicity, and pathogenicity. Additionally, biomaterials used as patch materials will need to attract and support desired cells and induce minimal immune responses.



Downloads

PDF  (452.42 KB PDF FORMAT)

RIS citation   (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)

BibTex citation   (BIBDESK, LATEX)


Sharing


What Your Colleagues Say About Biomarker Insights
I would like to extend my gratitude for creating the next generation of a scientific journal -- the science journal of tomorrow. The entire process bespoke of exceptional efficiency, celerity, professionalism, competency, and service.
Dr Jason B. Nikas (Medical School University of Minnesota, Minneapolis, MN, USA)
More Testimonials

Quick Links


New article and journal news notification services
Email Alerts RSS Feeds
Facebook Google+ Twitter
Pinterest Tumblr YouTube