Close
Help




JOURNAL

Biomedical Informatics Insights

Statistical and Similarity Methods for Classifying Emotion in Suicide Notes

Submit a Paper


Biomedical Informatics Insights 2012:5 (Suppl. 1) 195-204

Original Research

Published on 30 Jan 2012

DOI: 10.4137/BII.S8958


Further metadata provided in PDF



Sign up for email alerts to receive notifications of new articles published in Biomedical Informatics Insights

Abstract

In this paper we report on the approaches that we developed for the 2011 i2b2 Shared Task on Sentiment Analysis of Suicide Notes. We have cast the problem of detecting emotions in suicide notes as a supervised multi-label classification problem. Our classifiers use a variety of features based on (a) lexical indicators, (b) topic scores, and (c) similarity measures. Our best submission has a precision of 0.551, a recall of 0.485, and a F-measure of 0.516.



Downloads

PDF  (738.48 KB PDF FORMAT)

RIS citation   (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)

BibTex citation   (BIBDESK, LATEX)

XML

PMC HTML


Sharing


What Your Colleagues Say About Biomedical Informatics Insights
testimonial_image
It's a great experience publishing with Biomedical Informatics Insights. I am particularly impressed with the in-depth and constructive comments provided by the reviewers within such a short time-frame. The typesetting was not only prompt, but most importantly, effective. In fact, this was among the very few publication experiences that I have had when no correction was needed in the author proofs. I highly recommend Biomedical Informatics Insights to both readers and prospective ...
Dr Chun Hsi Huang (Computer Science and Engineering, University of Connecticut)
More Testimonials

Quick Links


New article and journal news notification services
Email Alerts RSS Feeds
Facebook Google+ Twitter
Pinterest Tumblr YouTube