Bioinformatics and Biology Insights 2014:8 135-145
Original Research
Published on 12 Jun 2014
DOI: 10.4137/BBI.S14631
Sign up for email alerts to receive notifications of new articles published in Bioinformatics and Biology Insights
Highly pathogenic Avian influenza (HPAI) is a notifiable viral disease caused by avian influenza type A viruses of the Orthomyxoviridae family. Type A influenza genome consists of eight segments of negative-sense RNA. RNA segment 2 encodes three proteins, PB1, PB1-F2, and N40, which are translated from the same mRNA by ribosomal leaky scanning and reinitiation. Since these proteins are critical for viral replication and pathogenesis, targeting their expression can be one of the approaches to control and resist HPAI. MicroRNAs are short noncoding RNAs that regulate a variety of biological processes such as cell growth, tissue differentiation, apoptosis, and viral infection. In this study, a set of 300 miRNAs expressed in chicken lungs were screened against the HPAI virus (H5N1) segment 2 with different screening parameter like thermodynamic stability of heteroduplex, seed sequence complementarity, conserved target sequence, and target-site accessibility for identifying miRNAs that can potentially target the transcript of segment 2 of H5N1. Chicken miRNAs gga-mir-133c, gga-mir-1710, and gga-mir-146c* are predicted to target the expression of PB1, PB1-F2, and N40 proteins. This indicates that chicken has genetic potential to resist/tolerate H5N1 infection and these can be suitably exploited in designing strategies for control of avian influenza in chicken.
PDF (3.41 MB PDF FORMAT)
RIS citation (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)
Supplementary Files 1 (220.62 KB ZIP FORMAT)
BibTex citation (BIBDESK, LATEX)
PMC HTML
Bioinformatics and Biology Insights helps to reach all people with the latest results on research which directly helps them and with their needs. Three of our co-authors are from Burkina Faso, the malaria holoendemic region our research is based on, and serving as motivation for all our efforts for better treatment of malaria. It is good to be social and it is good to promote science world-wide through open access.
Facebook Google+ Twitter
Pinterest Tumblr YouTube