Close
Help




JOURNAL

Biomedical Informatics Insights

Fine-Grained Emotion Detection in Suicide Notes: A Thresholding Approach to Multi-Label Classification

Submit a Paper


Biomedical Informatics Insights 2012:5 (Suppl. 1) 61-69

Original Research

Published on 30 Jan 2012

DOI: 10.4137/BII.S8966


Further metadata provided in PDF



Sign up for email alerts to receive notifications of new articles published in Biomedical Informatics Insights

Abstract

We present a system to automatically identify emotion-carrying sentences in suicide notes and to detect the specific fine-grained emotion conveyed. With this system, we competed in Track 2 of the 2011 Medical NLP Challenge,14 where the task was to distinguish between fifteen emotion labels, from guilt, sorrow, and hopelessness to hopefulness and happiness.

Since a sentence can be annotated with multiple emotions, we designed a thresholding approach that enables assigning multiple labels to a single instance. We rely on the probability estimates returned by an SVM classifier and experimentally set thresholds on these probabilities. Emotion labels are assigned only if their probability exceeds a certain threshold and if the probability of the sentence being emotion-free is low enough. We show the advantages of this thresholding approach by comparing it to a naïve system that assigns only the most probable label to each test sentence, and to a system trained on emotion-carrying sentences only.



Downloads

PDF  (1.07 MB PDF FORMAT)

RIS citation   (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)

BibTex citation   (BIBDESK, LATEX)

XML

PMC HTML


Sharing


What Your Colleagues Say About Biomedical Informatics Insights
testimonial_image
It's a great experience publishing with Biomedical Informatics Insights. I am particularly impressed with the in-depth and constructive comments provided by the reviewers within such a short time-frame. The typesetting was not only prompt, but most importantly, effective. In fact, this was among the very few publication experiences that I have had when no correction was needed in the author proofs. I highly recommend Biomedical Informatics Insights to both readers and prospective ...
Dr Chun Hsi Huang (Computer Science and Engineering, University of Connecticut)
More Testimonials

Quick Links


New article and journal news notification services
Email Alerts RSS Feeds
Facebook Google+ Twitter
Pinterest Tumblr YouTube