Sign up for email alerts to receive notifications of new articles published in Evolutionary Bioinformatics
The versatility of human immunodeficiency virus (HIV)-1 and its evolutionary potential to elude antiretroviral agents by mutating may be its most invincible weapon. Viruses, including HIV, in order to adapt and survive in their environment evolve at extremely fast rates. Given that conventional approaches which have been applied against HIV have failed, novel and more promising approaches must be employed. Recent studies advocate RNA interference (RNAi) as a promising therapeutic tool against HIV. In this regard, targeting multiple HIV sites in the context of a combinatorial RNAi-based approach may efficiently stop viral propagation at an early stage. Moreover, large high-throughput RNAi screens are widely used in the fields of drug development and reverse genetics. Computer-based algorithms, bioinformatics, and biostatistical approaches have been employed in traditional medicinal chemistry discovery protocols for low molecular weight compounds. However, the diversity and complexity of RNAi screens cannot be efficiently addressed by these outdated approaches. Herein, a series of novel workflows for both wet- and dry-lab strategies are presented in an effort to provide an updated review of state-of-the-art RNAi technologies, which may enable adequate progress in the fight against the HIV-1 virus.
PDF (495.80 KB PDF FORMAT)
RIS citation (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)
BibTex citation (BIBDESK, LATEX)
PMC HTML
It was a nice experience for me to publish my first paper in Evolutionary Bioinformatics. The peer review process was fast, critical, helpful and fair. The production process was also fast and accurate. Thanks for your hard work.
Facebook Google+ Twitter
Pinterest Tumblr YouTube