Close
Help




JOURNAL

Biomedical Informatics Insights

A Hybrid Model for Automatic Emotion Recognition in Suicide Notes

Submit a Paper


Biomedical Informatics Insights 2012:5 (Suppl. 1) 17-30

Original Research

Published on 30 Jan 2012

DOI: 10.4137/BII.S8948


Further metadata provided in PDF



Sign up for email alerts to receive notifications of new articles published in Biomedical Informatics Insights

Abstract

We describe the Open University team's submission to the 2011 i2b2/VA/Cincinnati Medical Natural Language Processing Challenge, Track 2 Shared Task for sentiment analysis in suicide notes. This Shared Task focused on the development of automatic systems that identify, at the sentence level, affective text of 15 specific emotions from suicide notes. We propose a hybrid model that incorporates a number of natural language processing techniques, including lexicon-based keyword spotting, CRF-based emotion cue identification, and machine learning-based emotion classification. The results generated by different techniques are integrated using different vote-based merging strategies. The automated system performed well against the manually-annotated gold standard, and achieved encouraging results with a micro-averaged F-measure score of 61.39% in textual emotion recognition, which was ranked 1st place out of 24 participant teams in this challenge. The results demonstrate that effective emotion recognition by an automated system is possible when a large annotated corpus is available.



Downloads

PDF  (604.78 KB PDF FORMAT)

RIS citation   (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)

BibTex citation   (BIBDESK, LATEX)

XML

PMC HTML


Sharing


What Your Colleagues Say About Biomedical Informatics Insights
The publication process was efficient and well-organized. I am pleased with my decision to submit my manuscript to Biomedical Informatics Insights and highly recommend others to submit their work to the journal.
Dr Mindy Ross (University of California, San Diego, CA, USA)
More Testimonials

Quick Links


New article and journal news notification services
Email Alerts RSS Feeds
Facebook Google+ Twitter
Pinterest Tumblr YouTube