Home Journals Subjects About My LA Reviewers Authors News Submit
Username: Password:
.
(close)

(Ctrl-click to select multiple journals)


How should we address you?

Your email address


Enter the three character code
Visual CAPTCHA
Privacy Statement
 
 
 
 
 
 

Targeted Chemotherapy Using a Cytotoxic Somatostatin Conjugate to Inhibit Tumor Growth and Metastasis in Nude Mice

Authors: Li-Chun Sun, L. Vienna Mackey, Jing Luo, Joseph A. Fuselier and David H. Coy
Publication Date: 19 Aug 2008
Clinical Medicine: Oncology 2008:2 491-499

Li-Chun Sun, L. Vienna Mackey, Jing Luo, Joseph A. Fuselier and David H. Coy

Department of Medicine, Peptide Research Laboratories, Tulane Health Sciences Center, New Orleans, LA 70112-2699, U.S.A.

Abstract

The major problems of traditional chemotherapy are non-selectivity and non-specificity, resulting in severe toxic side effects. Peptides are a new-generation of drug-delivery vector to increase efficacy of this therapy and avoid the resulting damage. The cytotoxic somatostatin (SST) conjugate JF-10-81 was developed by coupling camptothecin (CPT) to the N-terminus of a SST analog (JF-07-69) using an activated carbamate linker. This conjugate selectively targets somatostatin receptor subtype 2 (SSTR2) and also retains high binding affinity and rapid internalization as well as anti-proliferative activity towards various tumor cells. JF-10-81 was tested for its inhibitory activity against the growth of human tumors which included neuroblastoma (IMR32), pancreatic cancer (CFPAC-1), leukemia (MOLT-4), pancreatic carcinoid (BON) and prostate cancer (PC-3). Both SSTR2 mRNAs and proteins were detected in all these tumor cell lines. The conjugate displayed potent in vivo inhibitory activity, although some of the potency measured in in vitro experiments was lost. JF-10-81 was found to significantly inhibit growth of these SSTR-positive tumors, resulting in 87% tumor reduction in neuroblastoma IMR32 and 97% in leukemia MOLT-4 bearing animals, even inducing regression of CFPAC-1 tumors. SSTR-overexpressing BON tumors were unfortunately relatively CPT-insensitive in vitro, however, JF-10-81 again exhibited in vivo potency presumably by specifically increasing CPT concentrations inside the tumor cells so that the inhibition rate for JF-10-81 was 85%. Also, JF-10-81 was used to treat highly invasive PC-3 tumors where s.c. injections inhibited both tumor growth (almost 60% reduction) and tumor metastasis (over 70%). This conjugate demonstrated its broad and excellent anti-tumor activity by targeting SSTR2-specifi c tumor tissues, supporting that short peptides and their analogs may be applied as ideal drug- delivery carriers to improve the traditional chemotherapy.

Categories: Cancer , Oncology