Home Journals Subjects About My LA Reviewers Authors News Submit
Username: Password:
.
(close)

(Ctrl-click to select multiple journals)


How should we address you?

Your email address


Enter the three character code
Visual CAPTCHA
Privacy Statement

Role of the NMDA-receptor in Prepulse Inhibition in the Rat

Authors: Klas Linderholm, Susan Powell, Elin Olsson, Maria Holtze, Ralph Snodgrass and Sophie Erhardt
Publication Date: 12 Feb 2010
International Journal of Tryptophan Research 2010:3 1-12

Klas Linderholm1, Susan Powell2, Elin Olsson2, Maria Holtze1, Ralph Snodgrass3 and Sophie Erhardt1

1Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. 2Department of Psychiatry, University of California San Diego, 9500 Gilman Dr. MC0804, La Jolla, CA 92093, United States. 3Vistagen Therapeutics, Inc. 384 Oyster Point Blvd, #8 South San Francisco, CA 94080, United States.

Abstract

Kynurenic acid (KYNA) is an endogenous metabolite of tryptophan. Studies have revealed increased brain KYNA levels in patients with schizophrenia. Prepulse inhibition (PPI) is a behavioral model for sensorimotor gating and found to be reduced in schizophrenia. Previous studies have shown that pharmacologically elevated brain KYNA levels disrupt PPI in the rat. The aim of the present study was to investigate the receptor(s) involved in this effect. Rats were treated with different drugs selectively blocking each of the sites that KYNA antagonizes, namely the glutamate recognition site of the N-methyl-D-aspartate receptor (NMDAR), the α7* nicotinic acetylcholine receptor (α7nAChR) and the glycine site of the NMDAR. Kynurenine (200 mg/kg) was given to replicate the effects of increased levels of KYNA on PPI. In order to block the glutamate recognition site of the NMDAR, CGS 19755 (10 mg/kg) or SDZ 220–581 (2.5 mg/kg) were administered and to antagonize the α7nAChR methyllycaconitine (MLA; 6 mg/kg) was given. L-701,324 (1 and 4 mg/kg) or 4-Chloro-kynurenine (4-Cl-KYN; 25, 50 and 100 mg/kg), a drug in situ converted to 7-Chloro-kynurenic acid, were used to block the glycine-site of the NMDAR. Administration of SDZ 220-581 or CGS 19755 was associated with a robust reduction in PPI, whereas L-701,324, 4-Cl-KYN or MLA failed to alter PPI. Kynurenine increased brain KYNA levels 5-fold and tended to decrease PPI. The present study suggests that neither antagonism of the glycine-site of the NMDA receptor nor antagonism of the α7nAChR disrupts PPI, rather with regard to the effects of KYNA, blockade of the glutamate recognition-site is necessary to reduce PPI.