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Abstract: Kynurenic acid (KYNA) is an endogenous metabolite of tryptophan. Studies have revealed increased brain KYNA levels in 
patients with schizophrenia. Prepulse inhibition (PPI) is a behavioral model for sensorimotor gating and found to be reduced in schizo-
phrenia. Previous studies have shown that pharmacologically elevated brain KYNA levels disrupt PPI in the rat. The aim of the present 
study was to investigate the receptor(s) involved in this effect. Rats were treated with different drugs selectively blocking each of the 
sites that KYNA antagonizes, namely the glutamate recognition site of the N-methyl-D-aspartate receptor (NMDAR), the α7* nicotinic 
acetylcholine receptor (α7nAChR) and the glycine site of the NMDAR. Kynurenine (200 mg/kg) was given to replicate the effects of 
increased levels of KYNA on PPI. In order to block the glutamate recognition site of the NMDAR, CGS 19755 (10 mg/kg) or SDZ 
220–581 (2.5 mg/kg) were administered and to antagonize the α7nAChR methyllycaconitine (MLA; 6 mg/kg) was given. L-701,324 
(1 and 4 mg/kg) or 4-Chloro-kynurenine (4-Cl-KYN; 25, 50 and 100 mg/kg), a drug in situ converted to 7-Chloro-kynurenic acid, were 
used to block the glycine-site of the NMDAR. Administration of SDZ 220-581 or CGS 19755 was associated with a robust reduction in 
PPI, whereas L-701,324, 4-Cl-KYN or MLA failed to alter PPI. Kynurenine increased brain KYNA levels 5-fold and tended to decrease 
PPI. The present study suggests that neither antagonism of the glycine-site of the NMDA receptor nor antagonism of the α7nAChR 
disrupts PPI, rather with regard to the effects of KYNA, blockade of the glutamate recognition-site is necessary to reduce PPI.
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Introduction
Kynurenic acid is an endogenous tryptophan 
metabolite, primarily synthesized in and released 
from astrocytes.1–3 During the last decade, several 
studies implicate KYNA in the pathophysiology of 
various psychiatric conditions.4,5 For example, studies 
of patients with schizophrenia have revealed elevated 
levels of KYNA in both the cerebrospinal fluid (CSF) 
and in the post mortem prefrontal cortex.6,7 In addi-
tion, suicidal attempters with major depressive disor-
der8 as well as patients with bipolar disorder9 display 
elevated levels of KYNA in the CSF.

Kynurenic acid (KYNA, Fig. 1a) is an antagonist 
at glutamatergic and cholinergic receptors. In particu-
lar, low concentrations of KYNA block the glycine 
co-agonist site of the N-methyl-D-aspartate receptor 
(NMDAR, Fig. 2a; IC50 = 8–15 µM10,11) and the α7 
nicotinic acetylcholine receptor (α7nAChR, Fig. 2b; 
IC50 = 7 µM12). At higher concentrations, KYNA also 
blocks the glutamate recognition site of the NMDA 
receptor (IC50 = 200–500 µM10) and the AMPA/
kainate receptors (IC50 in the millimolar range13). In 
addition, KYNA was recently found to stimulate the 
previously orphan G-protein coupled receptor GPR35 
in the rat (EC50 = 7 µM14).

The physiological significance of brain KYNA has 
been demonstrated in a number of studies during the 
last decade.4 However, it is unclear which receptor(s) 
participate in the various effects of KYNA in the 
brain. Previous studies have shown that acute and 
chronic pharmacological elevation of brain KYNA is 
associated with increased firing of rat midbrain dopa-
mine (DA) neurons,15–21 an effect recently shown to 
be mediated via blockade of the glycine-site of the 
NMDA receptor.16,18 Furthermore, local administra-
tion of KYNA in the rat striatum decreases termi-
nal DA release via specific blockade of α7nAChR.22 
A previous study has also shown that pharmaco-
logically elevated levels of KYNA disrupts prepulse 
inhibition (PPI) in the rat,17,23 although the specific 
receptor mechanism involved was not ascertained.

PPI is defined as the attenuation of the startle 
response to a startling stimulus (e.g. a pulse), when 
such a stimulus is briefly preceded by a stimulus of 
subthreshold intensity (prepulse). Disruptions of sen-
sorimotor gating are considered to reflect dysfunc-
tions in the ability to filter out extraneous stimuli 
that might interfere with information processing and 

attention.24 Deficits in PPI are frequently observed in 
patients with schizophrenia.25–28 Interestingly, non-
competetive NMDAR antagonist, e.g. PCP, ketamine 
or MK 801, disrupt PPI in rodents.29 These effects on 
PPI are also in line with the NMDAR hypofunction 
hypothesis of schizophrenia,30–32 based on the finding 
that NMDAR antagonists cause psychotic symptoms 
in healthy volunteers and worsen clinical symptoms 
in patients.33–36

The present study investigated which receptor(s) 
mediate the effects of KYNA on PPI. For this purpose 
we administered drugs selectively blocking the dif-
ferent receptor-sites known to be blocked by KYNA; 
Methyllycaconitine (MLA, Fig. 1b), a selective 
antagonist at the α7nAChR; SDZ 220–581 and CGS 
19755 (Fig. 1c and 1d, respectively), selective block-
ers of the glutamate recognition-site of the NMDA-
receptor; L-701,324 (Fig. 1e) and 4-Cl-KYN (in situ 
converted to 7-Cl-KYNA, Fig. 1f) was given to selec-
tively block the glycine-site of the NMDAR. A puta-
tive role of the GPR35 receptor in this regard was not 
tested due to its limited expression in the brain.14

Materials and Methods
Animals
Experiments were performed on male Sprague-
Dawley rats (B&K Universal AB, Sollentuna, Sweden; 
weighing between 200–330 g). The animals were 
housed in groups of five with free access to food and 
water. Environmental conditions were checked daily 
and maintained under constant temperature (25 °C) 
and 40%–60% humidity in a room with a regulated, 
reversed 12 h light/dark cycle (lights off at 07.00 AM, 
lights on at 07.00 PM). Animals were handled at 
least 2 days before testing to reduce any subsequent 
handling stress. Experiments were approved by and 
performed in accordance with the guidelines of the 
Ethical Committee of Northern Stockholm, Sweden 
and all efforts were made to minimize the number of 
animals used and their suffering.

Drugs
The following drugs were used: 4-Cl-KYN (kindly 
supplied by Vistagen Therapeutics, South San Francisco, 
CA, USA and dissolved in 7.5% (2-hydroxypropyl)-b-
cyclodextrin, 7-Cl-KYNA, CGS 19755 and SDZ 220–
581 (Tocris, Avonmouth, UK); KYNA, L-kynurenine 
sulfate salt, L-701,324 and MLA (Sigma, St. Louis, 
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Figures 1. Kynurenic acid a) and selective inhibitors for α7nAChR (MLA, b), glutamate recognition-site of the NMDAR (SDZ 220-581, c; CGS 19755, 
d) and the glycine-site of the NMDAR (L-701,324, e; 7-Cl-KYNA, f).
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Figures 2. Scheme of the NMDAR a) and α7nAChR b) and their allosteric- and ligand binding-sites.
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MO,USA). The chemicals used were: zinc acetate 
and acetic acid (Sigma, St. Louis, MO, USA); sodium 
acetate (Riedel-de Haen, Germany) and acetonitrile 
(Labasco, Partille, Sweden). 4-Cl-KYN, L-kynurenine, 
L-701,324 and MLA were administered intraperitone-
ally (i.p.). SDZ 220–581 and CGS 19755 were admin-
istered subcutaneously (s.c.). All doses are expressed 
as free base.

Apparatus
Two startle chambers were used for measuring the 
startle response (SR-LAB, San Diego Instruments, 
San Diego, California). Each chamber consisted of 
a Plexiglas cylinder (9-cm diameter) mounted on 
a frame, housed within a ventilated chamber (39 × 
38 × 58 cm). Sudden movements within the cylin-
der were detected by a piezoelectric accelerometer 
attached below the cylinder. A loudspeaker (Super-
tweeter; Radio Shack, Fort Worth, Texas) mounted 
24 cm above the cylinder provided the broadband 
background noise and acoustic stimuli. Presenta-
tions of the acoustic stimuli were controlled by 
the SR-LAB software and interface system, which 
also rectified, digitized (0-4095), and recorded 
responses from the accelerometer. As described 
previously,37 sound levels [dB(A) scale] and accel-
erometer sensitivities within each chamber were 
calibrated regularly and found to remain constant 
over the test period.

Experimental protocols
To elevate levels of endogenous brain KYNA, rats 
(n = 14) were pretreated with kynurenine (200 mg/kg) 
i.p. 60 min before testing. Control rats (n = 13) received 
vehicle i.p. 60 min before testing for comparison with 
animals treated with kynurenine. In order to block the 
glutamate recognition-site of the NMDAR, rats were 
pretreated with SDZ 220–581 (2.5 mg/kg, n = 12) s.c. 
30 min before testing or CGS 19755 (10 mg/kg, n = 12) 
s.c. 45 min before testing. For these experiments, rats 
receiving saline (n = 12) s.c. 30 min before testing, 
were used as controls. In a third experiment, rats were 
treated with drugs blocking the glycine-site of the 
NMDAR or the α7nAChR. In order to block the gly-
cine-site of the NMDAR, in situ produced 7-Cl-KYNA 
or pretreatment with L-701,324 (1 mg/kg, n = 13 or 
4 mg/kg, n = 17) i.p. 15 min before testing were used. 
To elevate 7-Cl-KYNA, rats were pretreated with 

4-Cl-KYN (25 mg/kg, n = 15; 50 mg/kg, n = 14; or 
100 mg/kg, n = 10) i.p. 60 min before testing. For 
selective blocking of the α7nAChR, rats were treated 
with methyllycaconitine (MLA, 6 mg/kg, n = 15) i.p. 
10 min before testing. Controls in this study (n = 18) 
received saline i.p. 15 min before testing. Pre-treat-
ment times were based on previous studies.18,38,39 All 
drug combinations were balanced across the two star-
tle chambers. The experimental session consisted of a 
5 min acclimatization period to a 65-dB background 
noise (continuous throughout the session), followed 
by a 20-min acoustic PPI test session. Seven days 
before any drug testing, animals were pre-exposed 
to the chambers and the testing session. The purpose 
of the preexposure was to acclimatize the animals to 
the testing chambers and startle/prepulse stimuli and 
to baseline-match the groups for subsequent testing 
(groups were matched for equivalent mean startle 
magnitude and percent PPI, as defined below). In the 
test session, a background noise (65 dB) was pre-
sented alone for 5 min and then continued throughout 
the remainder of the session. The test session used 
in all of the experiments contained five different trial 
types and had a duration of 20 min: a “pulse-alone” 
trial, in which a 40-msec 120-dB broadband burst 
was presented; three “prepulse-pulse” trials, in which 
20-msec noises that were either 3, 6, or 12 dB above 
the background noise were presented 100 msec before 
the onset of the 120-dB pulse; and a “no stimulus” 
trial, which included only the background noise. All 
trial types were presented several times in a pseudo-
random order for 60 trials (12 pulse-alone trials, 10 
each of the remaining prepulse trial types, and eight 
no-stimulus trials). Five pulse-alone trials, which 
were not included in the calculation of PPI values, 
were presented at the beginning of the test session to 
achieve a relatively stable level of startle reactivity 
for the remainder of the session (based on the obser-
vation that the most rapid habituation of the startle 
reflex occurs within the first few presentations of the 
startling stimulus40). In addition, five pulse-alone tri-
als occurred at the end of the session to assess startle 
habituation but were not included in the calculation of 
PPI. An average of 15 sec (range, 9–21 sec) separated 
consecutive trials. The whole session lasted approxi-
mately 24 min. A brief baseline session used to famil-
iarize rats with the testing procedure and match groups 
for pharmacological studies consisted of 24 trials 
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(18 120-dB pulse-alone and six prepulse-pulse trials 
with a 12-dB prepulse intensity).

Analysis of whole-brain kynurenic acid 
and 7-chloro-kynurenic acid
Immediately after the behavioral experiments, the 
rats were killed by decapitation. The brains were 
taken out rapidly and stored immediately at -70 °C 
for subsequent analysis of KYNA and 7-Cl-KYNA. 
The brains were sonicated with homogenization 
medium (perchloric acid 0.4 mol/L, Na2S2O5 0.1%, 
and ethylenediaminetetraacetic acid 0.05%), which 
was added in the same amount as the weight of the 
brain before sonication. The samples were centri-
fuged at 4000 g for 10 min, and 40 µL perchloric acid 
(70%) was added to the supernatant. Thereafter, the 
supernatant was centrifuged twice. For analysis of 
KYNA and 7-Cl-KYNA, an isocratic reversed phase 
high-performance liquid chromatography (HPLC) 
system was used, including a dual piston, high liq-
uid delivery pump (Bischoff, Leonberg, Germany), a 
ReproSil-Pur C18 column (4 × 150 mm, Dr. Maisch 
GmbH, Ammerbuch, Germany) and a fluorescence 
detector (Jasco Ltd, Hachioji City, Japan) with an 
excitation and emission wavelength of 344 nm and 
398 nm, respectively (18 nm bandwidth). A mobile 
phase of sodium acetate (50 mM, pH 6.20, adjusted 
with acetic acid) and acetonitrile (7% or 10%, for 
KYNA or 7-Cl-KYNA, respectively) was pumped 
through the reversed-phase column at a flow rate of 
0.5 mL/min. Samples of 30 ml were manually injected 
(Rheodyne, Cotati, CA, USA). Zinc acetate (0.5 M, 
not pH adjusted) was delivered post column by a 
peristaltic pump (P-500, Pharmacia, Uppsala, Swe-
den) at a flow rate of 0.10 mL/min. The signals from 
the fluorescence detector were transferred to a com-
puter for analysis utilizing Datalys Azur (Grenoble, 
France). The retention time of KYNA or 7-Cl-KYNA 
was about 7 or 16 min, respectively.

Data and statistical analysis
For each pulse-alone and prepulse-pulse trial, the 
startle response to the 120-dB burst was recorded. 
Two measures were then calculated from these data 
for each animal. First, startle magnitudes were calcu-
lated as the average response to the pulse-alone tri-
als within each of the four blocks and analyzed with 
mixed-design analyses of variance (ANOVAs), with 

block as the repeated measure and pretreatment and/
or treatment as between-subject factors. Data from the 
first and last blocks of five pulse-alone trials are not 
presented, because the startle data from the middle 
two blocks when PPI was assessed were representa-
tive of the treatment effects, and no reliable effects 
on startle habituation were observed. Second, the 
amount of PPI was calculated as a percentage score 
for each prepulse + pulse trial type: %PPI = 100—
([(startle response for prepulse + pulse trial)/(startle 
response for pulse-alone trial)] × 100). All data were 
first analyzed in a three-factor ANOVA with blocks 
(first and second halves of the session) and prepulse 
as within subject factors and treatment as a between 
subject factor. When the block factor did not inter-
act with another factor, only the two-factor ANOVA 
(treatment and prepulse intensity) are reported. The 
main effect of prepulse intensity was always signifi-
cant and is not reported specifically. Post hoc com-
parisons of means were carried out with Tukey’s test. 
Each experiment was analyzed separately.

All data are presented as mean ± SEM. Statisti-
cally significant differences regarding concentrations 
of KYNA and 7-Cl-KYNA were established using 
Kruskal-Wallis analysis of variance followed by 
Mann-Whitney U-test. Alpha was set at 0.05.

Results
Rats administered kynurenine (200 mg/kg) displayed 
a 5-fold increase in whole brain KYNA levels (123.1 ± 
18.8 nM, n = 14) compared to controls (23.3 ± 2.7 nM, 
n = 13; Table 1). This elevation of brain KYNA was 
associated with a tendency to decrease PPI at all pre-
pulse intensities (F(1.25) = 2.56, p = 0.12; Fig. 3) 
and a trend toward decreasing in startle magnitude 
(F(1,25) = 3.37, p = 0.078).

Treatment with drugs blocking the glutamate rec-
ognition site of the NMDA receptor, i.e SDZ 220–581 
(2.5 mg/kg; F(1,22) = 12.33, p  0.01) or CGS 19755 
(10 mg/kg; F(1,22) = 16.47, p  0.001), was found to 
clearly reduce PPI (Fig. 4). While SDZ 220–581 had 
no effect on startle magnitude, CGS 19755 signifi-
cantly decreased startle magnitude (F(1,22) = 5.32, 
p  0.05).

In order to investigate if blockade of the glycine-site 
of the NMDA receptor or blockade of the α7nAChR 
disrupts PPI, three different drugs were used, i.e. 
L-701,324, 4-Cl-KYN and MLA. Administration of 
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Table 1. Whole brain concentrations of KYNA or 7-Cl-
KYNA in rats pretreated with kynurenine (i.p., 1.5 h, n = 14)  
or 4-Cl-KYN (i.p., 1.5 h, n = 10–15).1

Treatment KYNA, nM 7-Cl-Kyna, nM
Control2 23.26 ± 2.67 -
Kynurenine,  
200 mg/kg

123.10 ± 18.76*** -

4-Cl-Kynurenine,  
25 mg/kg

– 9.23 ± 1.60

4-Cl-Kynurenine,  
50 mg/kg

– 18.44 ± 3.14

4-Cl-Kynurenine,  
100 mg/kg

– 52.10  ± 8.84

1Values represent mean ± SEM. Statistics: ***p  0.001 vs. control 
(Mann-Whitney U-test).
2n = 13.

L-701,324 (1 and 4 mg/kg; F(2,45) = 2.22, p = 0.12), 
4-Cl-KYN (25; 50 and 100 mg/kg; NS), which in situ 
was converted to 7-Cl-KYNA (a potent and selective 
antagonist at the glycine-site of the NMDA recep-
tor) or MLA (6 mg/kg) were not associated with dis-
rupted PPI (F(1,31) = 2.84, p = 0.102; Figs. 5 and 
6). MLA and 4-Cl-KYN did not affect startle mag-
nitude; whereas L-701,324 (4 mg/kg) reduced startle 
(F(2,45) = 3.20, p = 0.0503).

Discussion
Present results show that pharmacological elevation 
of brain KYNA is associated with a tendency to dis-
rupt PPI in the rat. The reason for not reaching statis-
tical significance may reflect the fact that kynurenine 

Figures 3. Effects of kynurenine (200 mg/kg, i.p., 60 min, n = 14) or vehicle (i.p. 60 min, n = 13) on prepulse inhibition (PPI). Values represent mean ± 
SEM for each group.
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Table 2. Effects on startle magnitude.

Vehicle Kynurenine, 200 mg/kg
281.82 ± 41.68 203.75 ± 17.95
Saline CGS 19755, 10 mg/kg SDZ 220–581, 2.5 mg/kg
347.16 ± 43.07 235.87 ± 26.20* 358.42 ± 62.10
Saline 4-Cl-KYN, 25 mg/kg 4-Cl-KYN, 50 mg/kg 4-Cl-KYN, 100 mg/kg
284.80 ± 31.54 342.44 ± 81.18 294.48 ± 49.01 288.82 ± 44.57

L-701, 324, 1 mg/kg L-701, 324, 4 mg/kg
290.15 ± 50.24 189.21 ± 18.75
MLA, 6 mg/kg
264.59 ± 26.20

Values represent mean ± SEM. *p  0.05 vs. control, F(1,22) = 5.32.

Figures 4. Effects of CGS 19755 (10 mg/kg, s.c., 45 min, n = 12), SDZ 220–581 (2.5 mg/kg, s.c., 30 min, n = 12) or saline (n = 12) on PPI. Values represent 
mean ± SEM for each group. Statistics: *p  0.01 vs. saline, **p  0.001 vs. saline.
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Figures 5. Effects of 4-Chloro-kynurenine (25, 50 or 100 mg/kg, i.p., 60 min; n = 15, n = 14 and n = 10, respectively; in situ converted to 7-Cl-KYNA) or 
saline (n = 18) on PPI. Values represent mean ± SEM for each group.
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Figures 6. Effects of L-701,324 (1 or 4 mg/kg, i.p., 15 min, n = 13 and n = 17, respectively), MLA (6 mg/kg, i.p., 10 min, n = 15) or saline (n = 18) on PPI. 
Values represent mean ± SEM for each group.
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does not selectively increase KYNA but also increases 
other neuroactive metabolites of the kynurenine 
pathway, e.g. 3-hydroxykynurenine and quinolinic 
acid.41 In a previous study we showed that both kyn-
urenine as well as PNU 156561A, a drug blocking 
kynurenine 3-hydroxylase and thereby shunting the 
synthesis towards KYNA, significantly reduce PPI in 
Sprague Dawley rats.23 A limitation with the present 
study is the fact that pharmacological tools, aiming 
at selectively increase KYNA, are lacking, simply 
because such tools are not available.

The results of the present study also show that 
administration of CGS 19755 or the highest dose of 
L-701,324 reduce startle. Such an effect was pre-
viously observed in rats with a 60-fold increase in 
brain KYNA levels23 and thought to be related to 
sedation. In the present study no signs of sedation 
was observed in rats treated with CGS 19755 or 
L-701,324. The reduced PPI following administra-
tion of SDZ 220-581 or CGS 19755 confirms that 
blockade of the glutamate recognition site of the 
NMDA receptor is associated with disrupted PPI.38,42 
In contrast, blockade of either the α7nAChR or the 
NMDAR/glycine-site had no effect on PPI. These 
effects are in line with previous studies showing 
that systemic administration of antagonists of the 
NMDAR/glycine-site do not affect PPI.42,43 How-
ever, local administration of 7-Cl-KYNA, intracere-
broventricularely, or into the nucleus accumbens, 
has been found to reduce PPI.39,44,45 A benefit of 
using systemic administration of 4-Cl-KYN is the 
in situ production of 7-Cl-KYNA. 4-Cl-KYN uti-
lizes the same enzymatic machinery as kynuren-
ine and hence 7-Cl-KYNA will be produced in the 
same regions and micro-compartments in which 
KYNA is produced. The effects of locally produced 
7-Cl-KYNA, derived from systemic administra-
tion of 4-Cl-KYN, should thus better correspond 
to the effects seen by increased levels of KYNA. 
A recent study supports this view, since it has been 
shown that the increased firing of midbrain dopa-
mine cells, following in situ produced 7-Cl-KYNA, 
are almost identical to the enhanced dopaminergic 
firing following pharmacologically elevated levels 
of KYNA. Thus, the abscence of an effect on PPI 
following elevated levels of 7-Cl-KYNA reliably 
suggest that the glycine-site of the NMDAR is not 
primarily involved in the modulation of PPI. Of note, 

4-Cl-KYN is developed for the treatment of neuro-
logical pain and the absence of a disruptive effect 
on PPI following administration of this agent sug-
gest a lower risk of side effects related to cognition. 
Previous studies analyzing a putative involvement 
of the α7nAChR on PPI are conflicting as it has 
been shown that administration of α-bungarotoxin, 
another α7nAChR antagonist, or removal of hip-
pocampal cholinergic afferents, disrupts PPI.46–48 
However, the tendency to an increased PPI in the 
present study following administration of MLA, an 
antagonist of α7nAChR, is more consistent with a 
previous study by Schreiber et al,49 and by the find-
ing that PPI is normal in α7* null mutant mice.50

KYNA plays a significant physiological role in 
the brain (c.f. Introduction). In addition, elevation 
of brain KYNA is associated with cognitive dys-
functions in rodents,51–53 deficits also present in 
psychiatric disorders, i.e. schizophrenia, bipolar 
disorder and major depressive disorder. In order to 
design novel therapeutic drugs, specifically aim-
ing at preventing the effects of KYNA, the specific 
receptor involved in the variety of effects induced 
by KYNA must be ascertained. The present study 
suggests that neither antagonism of the glycine-site 
of the NMDAR nor antagonism of the α7nAChR 
disrupts PPI. Rather, with regard to the effects of 
KYNA, blockade of the glutamate recognition-site 
is necessary to reduce PPI.
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