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Abstract: For the last eight years, microarray-based class prediction has been the subject of numerous publications in 
medicine, bioinformatics and statistics journals. However, in many articles, the assessment of classifi cation accuracy is 
carried out using suboptimal procedures and is not paid much attention. In this paper, we carefully review various statistical 
aspects of classifi er evaluation and validation from a practical point of view. The main topics addressed are accuracy mea-
sures, error rate estimation procedures, variable selection, choice of classifi ers and validation strategy.
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1 Introduction
In the last few years, microarray-based class prediction has become a major topic in many medical 
fi elds. Cancer research is one of the most important fi elds of application of microarray-based prediction, 
although classifi ers have also been proposed for other diseases such as multiple sclerosis (Bomprezzi 
et al. 2003). Important applications are molecular diagnosis of disease subtype and prediction of future 
events such as, e.g. response to treatment, relapses (in multiple sclerosis) or cancer recidive. Note that 
both problems are usually treated identically from a statistical point of view and related from a medical 
point of view, since patients with different disease subtypes also often have different outcomes.

Let us consider a standard class prediction problem where expression data of p transcripts and the 
class information are available for a group of n patients. From a statistical point of view, patients are 
observations and transcripts are variables. Note that a particular gene might be represented several 
times. To avoid misunderstandings, we prefer the statistical term “variable” to the ambiguous term 
“gene”. In microarray studies, the number of variables p is huge compared to n (typically, 5000 � p � 
50000 and 20 � n �300), which makes standard statistical prediction methods inapplicable. This 
dimensionality problem is also encountered in other fi elds such as proteomics or chemometrics. Hence, 
the issues discussed in the present article are not specifi c to microarray data. The term response class 
refers to the categorical variable that has to be predicted based on gene expression data. It can be, e.g. 
the presence or absence of disease, a tumor subtype such as ALL/AML (Golub et al. 1999) or the 
response to a therapy (Ghadimi et al. 2005; Rimkus et al. 2008). The number of classes may be higher 
than two, though binary class prediction is by far the most frequent case in practice.

Note that gene expression data may also be used to predict survival times, ordinal scores or con-
tinuous parameters. However, class prediction is the most relevant prediction problem in practice. The 
interpretation of results is much more intuitive for class prediction than for other prediction problems. 
From a medical point of view, it is often sensible to summarize more complex prediction problems such 
as, e.g. survival prediction or ordinal regression as binary class prediction. Moreover, we think that the 
model assumptions required by most survival analysis methods and methods for the prediction of con-
tinuous outcomes are certainly as questionable as the simplifi cation into a classifi cation problem. 
However, one has to be aware that transforming a general prediction problem into class prediction may 
lead to a loss of information, depending on the addressed medical question.

Beside some comparative studies briefl y recalled in Section 2, several review articles on particular 
aspects of classifi cation have been published in the last fi ve years. For example, an extensive review 
on machine learning in bioinformatics including class prediction can be found in Larranaga et al. (2006), 
whereas Chen (2007) reviews both class comparison and class prediction with emphasis on univariate 
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test statistics and model choice from the point of 
view of pharmacogenomics. Asyali et al. (2006) 
gives a wide overview of class prediction and 
related problems such as data preparation and 
clustering. Synthetic guidelines for good practice 
in microarray data analysis including class predic-
tion can be found in Simon et al. (2003); Dupuy 
and Simon (2007). The latter also gives a critical 
overview of cancer research articles published in 
2004.

In contrast to all these, the present article 
focuses specifi cally on the statistical evaluation of 
microarray-based prediction methods. After a brief 
overview of existing classifi cation methods in 
Section 2, measures of classifi cation accuracy 
including error rate, sensitivity and specifi city as 
well as ROC-curve analysis are addressed 
in Section 3. Section 4 reviews different evaluation 
strategies such as leaving-one-out cross-validation 
or bootstrap methods from a technical point of 
view, whereas Section 5 gives guidelines for prac-
tical studies. An overview of software for microar-
ray-based class prediction in the R system for 
statistical computing (R Development Core Team, 
2006) is given in the appendix.

2 Overview of Existing Classifi ers

Coping with high-dimensional data
There exist a variety of classifi cation methods 
addressing exactly the same statistical problem. 
Several classifi ers have been invented or adapted 
to address specifi cally prediction problems based 
on high-dimensional microarray data. Class predic-
tion can also be addressed using machine learning 
approaches. The aim of this section is to provide 
a concise overview of the most well-known clas-
sifi cation approaches rather than an exhaustive 
enumeration. In contrast to other authors, we orga-
nize this overview with respect to the scheme used 
to handle high-dimensionality and not to the clas-
sifi er itself. From this perspective, methods for 
handling high-dimensional data can basically be 
grouped into three categories: approaches based 
on (explicit) variable selection, procedures based 
on dimension reduction and methods performing 
intrinsic variable selection. It should be noted that 
the three mentioned types of approaches for han-
dling high dimensional data can also be combined 
with each other. For instance, variable selection 
may be performed prior to dimension reduction or 

before applying a method handling more variables 
than observations.

Variable selection
The most intuitive approach consists of fi rst select-
ing a small subset of variables and then applying 
a traditional classifi cation method to the reduced 
data set. By traditional methods, we mean well-
known statistical methods handling a rather 
limited number of variables, such as discriminant 
analysis methods reviewed and compared by 
Dudoit et al. (2002) including linear and quadratic 
discriminant analysis or Fisher’s linear discrimi-
nant analysis, classical logistic regression or 
k-nearest-neighbors. In principle, the latter could 
be applied to a high number of variables but per-
forms poorly on noisy data.

Many variable selection approaches have been 
described in the bioinformatics literature. Over-
views include the works by Stolovitzky (2003) 
and Jeffery et al. (2006). The methods applied can 
be classified as univariate and multivariate 
approaches. Univariate approaches consider each 
variable separately: they are based on the marginal 
utility of each variable for the classifi cation task. 
Variables are ranked according to some criterion 
refl ecting their association to the phenotype of 
interest. After ranking, the fi rst variables of the 
list are selected for further analysis. Many criteria 
are conceivable, for instance usual test statistics 
like Student’s t-statistic or nonparametric statistics 
such as Wilcoxon’s rank sum statistic. Further 
non-parametric univariate criteria include more 
heuristic measures such as the TnoM score by 
Ben-Dor et al. (2000). Some of the nonparametric 
univariate approaches are reviewed by Troyanskaya 
et al. (2002). The t-statistic, the Mann-Whitney 
statistic and the heuristic signal-to-noise ratio 
suggested by Golub et al. (1999) are the most 
widely-used criteria in practice (Dupuy and 
Simon, 2007).

In the context of differential expression detec-
tion, several regularized variants of the standard 
t-statistic have been proposed in the last few years. 
They include, e.g. empirical Bayes methods 
(Smyth, 2004). An overview can be found in 
Opgen-Rhein and Strimmer (2007). Although 
empirical Bayes methods are usually considered 
as univariate approaches, they involve a multi-
variate component in the sense described below, 
since the statistic of each variable is derived by 
borrowing information from other variables.
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Univariate methods are fast and conceptually 
simple. However, they do not take correlations or 
interactions between variables into account, result-
ing in a subset of variables that may not be optimal 
for the considered classifi cation task. This is obvi-
ous in the extreme case where, say, the 10 fi rst 
variables correspond to the same transcript, yield-
ing a strong correlation structure. It is then subop-
timal to select these 10 redundant variables instead 
of variables with a worse univariate criterion value 
but giving non-redundant information.

Multivariate variable selection approaches for 
microarray data have been the subject of a few tens 
of rather theoretical articles. They take the preced-
ing argument seriously that the subset of the vari-
ables with best univariate discrimination power is 
not necessarily the best subset of variables, due to 
interactions and correlations between variables. 
Therefore, multivariate variable selection methods 
do not score each variable individually but rather 
try to determine which combinations of variables 
yield high prediction accuracy. A multivariate vari-
able selection method is characterized by i) the 
criterion used to score the considered subsets of 
variables and ii) the algorithm employed to search 
the space of the possible subsets, an exhaustive 
enumeration of the 2p−1 possible subsets being 
computationally unfeasible. Scoring criteria can 
be categorized into wrapper criteria, i.e. criteria 
based on the classifi cation accuracy or fi lter crite-
ria that measure the discrimination power of the 
considered subset of variables without involving 
the classifi er, for instance the Mahalanobis distance 
well-known from cluster analysis (which can 
roughly be seen as multivariate t-statistic).

There have also been various proposals regard-
ing the search algorithms. Some methods, which 
could be denoted as “semi-multivariate” restrict 
the search to pairs of variables (Bo and Jonassen, 
2002) or subsets of low-correlated and thus pre-
sumably non-redundant variables derived from the 
list of univariately best variables (Jäger et al. 
2003). In contrast, other authors seek for globally 
optimal subsets of variables based on sophisticated 
search algorithms such as molecular algorithms 
(Goldberg, 1989) applied to microarray data by, 
e.g. Ooi and Tan (2003).

Note that most multivariate variable selection 
methods take only correlations between variables 
but not interactions into account, depending on 
the considered criterion used to score the variable 
subsets. The recent method suggested by 

Diaz-Uriarte and de Andrés (2006) based on 
random forests (Breiman, 2001) is one of the very 
few methods taking interactions into account 
explicitly. Potential pitfalls of multivariate methods 
are the computational expense, the sensitivity to 
small changes in the learning data and the tendency 
to overfi tting. This is particularly true for methods 
looking globally for good performing subsets of 
variables, which makes semi-multivariate methods 
preferable in our view. Note that, from a technical 
point of view, univariate variable selection meth-
ods, which select the top variables from a ranked 
list, may be seen as a special case of multivariate 
selection, where the candidate subsets are defi ned 
as the subsets formed by top variables.

In pattern recognition another interesting frame-
work that has been suggested for variable selection 
is the rough set approach of Pawlak (1991). In this 
framework, concepts that are relevant for variable 
selection issues are the so-called reducts and the 
core of a data table, that can be outlined as follows. 
Subsets of variables that are suffi cient to maintain 
the structure of equivalence classes (i.e. to distin-
guish groups of observations that share the same 
values of a set of variables) form the reduct. In a 
given data set, several reducts may equally well 
represent the structure of equivalence classes. 
However, a (potentially empty) subset of variables 
is included in all reducts. This so-called core 
contains those variables that cannot be removed 
from the data set without loosing information. In 
addition to the reducts and core based on the struc-
ture of the variables, the relative reducts and the 
relative core also incorporate the response class 
membership by means of rough sets. They are 
thus interesting concepts for variable selection 
issues in classifi cation problems. This approach 
can be considered as a multivariate variable selec-
tion method because it refl ects correlations within 
the data matrix and can be extended to cover 
interaction effects (Li and Zhang, 2006). How-
ever, Kohavi and Frasca (1994) show in a study 
on simulated and real data that the subset of fea-
tures that is optimally suited for classifi cation is 
not necessarily a relative reduct (i.e. does not 
necessarily include the relative core) but note that 
using the relative core as a starting point for, e.g. 
stepwise variable selection may be more promis-
ing (cf also Swiniarski and Skowron, 2003; Zhang 
and Yao, 2004, for overviews on rough set 
approaches for variable selection and recent 
advancements).
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Dimension reduction
A major shortcoming of variable selection when 
applied in combination with classifi cation methods 
requiring the sample size n to be larger than the 
number p of variables is that only a small part of 
the available information is used. For example, if 
one applies logistic regression to a data set of size 
n = 50, the model should include at most about 10 
variables, which excludes possibly interesting 
candidates. Moreover, correlations between vari-
ables are not taken into account and can even pose 
a problem in model estimation, the more as gene 
expression data are known to be highly correlated. 
An option to circumvent these problems is dimen-
sion reduction, which aims at “summarizing” the 
numerous predictors in form of a small number of 
new components (often linear combinations of the 
original predictors). Well-known examples are 
Principal Component Analysis (PCA), Partial 
Least Squares (PLS, Nguyen and Rocke, 2002; 
Boulesteix, 2004; Boulesteix and Strimmer, 2007) 
and its generalizations (Fort and Lambert-Lacroix, 
2005; Ding and Gentleman, 2005), or the Inde-
pendent Component Analysis (ICA) motivated 
approach to classificatory decomposition 
(Smolinski et al. 2006). A concise overview of 
dimension reduction methods that have been used 
for classifi cation with microarray data is given in 
Boulesteix (2006).

After dimension reduction, one can basically 
apply any classifi cation method to the constructed 
components, for instance logistic regression or 
discriminant analysis. However, as opposed to 
the original genetic or clinical variables, the com-
ponents constructed with dimension reduction 
techniques themselves may not be interpretable 
any more.

Methods handling a high number
of variables directly
Instead of reducing the data to a small number of 
(either constructed or selected) predictors, meth-
ods handling large numbers of variables may be 
used. Preliminary variable selection or dimension 
reduction are then unnecessary in theory, although 
often useful in practice in the case of huge data 
sets including several tens of thousands of vari-
ables. Methods handling a high number of 
variables (p � n) directly can roughly be divided 
into two categories: statistical methods based on 
penalization or shrinkage on the one hand, and 

approaches borrowed from the machine learning 
community on the other hand. The fi rst category 
includes, e.g. penalized logistic regression (Zhu, 
2004), the Prediction Analysis of Microarrays 
(PAM) method based on shrunken centroids 
(Tibshirani et al. 2002), Support Vector Machines 
(SVM) (Vapnik, 1995) or the more recent regular-
ized linear discriminant analysis (Guo et al. 2007). 
Such methods usually involve one or several pen-
alty or shrinkage parameter(s) reflecting the 
amount of regularization.

Ensemble methods based on recursive parti-
tioning belong to the second category. They 
include for example bagging procedures (Breiman, 
1996) applied to microarray data by Dudoit et al. 
(2002), boosting (Freund and Schapire, 1997) 
used in combination with decision trees by 
Dettling and Buhlmann (2003), BagBoosting 
(Dettling, 2004) or Breiman’s (2001) random 
forests examined by Diaz-Uriarte and de Andrés 
(2006) in the context of variable selection for 
classification. These methods may be easily 
applied in the n � p setting. However, most of 
them become intractable when the number of 
features reaches a few tens of thousands, as usual 
in recent data sets. They should then be employed 
in combination with variable selection or 
dimension reduction.

Methods handling a high number of variables 
can be seen as performing intrinsic variable selec-
tion. Shrinkage and penalization methods allow to 
distinguish irrelevant from relevant variables 
through modifying their coeffi cients. Tree-based 
ensemble methods also distinguish between irrel-
evant and relevant variables intrinsically, through 
variable selection at each split.

This somewhat artifi cial splitting into four 
categories (variable selection, dimension reduc-
tion, regularization methods and machine learn-
ing approaches) may inspire the choice of 
candidate classifi ers in practical data analysis. 
Although our aim is defi nitely not to rate meth-
ods, let us sketch a possible approach inspired 
from the categories outlined above. Since it is in 
general recommendable to use methods of dif-
ferent nature, a possible combination would be: 
i) a simple discriminant analysis method such as 
Linear Discriminant Analysis (LDA) combined 
with variable selection, ii) a dimension reduction 
technique, for instance the supervised PLS 
approach, iii) some regularization techniques, for 
instance L1 or L2 penalized regression or Support 
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Vector Machines and iv) an ensemble method 
such as random forests.

Comparison studies
Prediction methods have been compared in a 
number of articles published in statistics and 
bioinformatics journals. Some of the comparisons 
are so-to-say neutral, whereas others aim at 
demonstrating the superiority of a particular 
method. Neutral comparison studies include 
Dudoit et al. (2002); Romualdi et al. (2003); Man 
et al. (2004); Lee et al. (2005); Statnikov et al. 
(2005). Comparison of different classification 
methods can also be found in biological articles 
with strong methodological background (e.g. 
Natsoulis et al. 2005). Most of these studies include 
common “benchmark” data sets such as the well-
known leukemia (Golub et al. 1999) and colon 
(Alon et al. 1999) data sets. Table 2 (Appendix B) 
summarizes the characteristics and results of six 
published comparison studies, which we took as 
neutral, because they satisfy the following 
criteria:

• The title includes explicitly words such as 
“comparison” or “evaluation”, but no specifi c 
method is mentioned, thus excluding articles 
whose main aim is to demonstrate the superiority 
of a particular (new) method.

• The article has a clear methodological orienta-
tion. In particular, the methods are described 
precisely (including, e.g. the chosen variant or 
the choice of parameters) and adequate statistical 
references are provided.

• The comparison is based on at least two data 
sets.

• The comparison is based on at least one of the 
following evaluation strategies: cross-validation, 
Monte-Carlo cross-validation, bootstrap 
methods (see Section 4).

However, even if those criteria are met, 
optimistically biased results are likely to be 
obtained with the method(s) from the authors’ 
expertise area. For example, authors are aware of 
all available implementations of that method and 
will quite naturally choose the best one. They may 
also tend to choose the variable selection method 
(e.g. t-test or Mann-Whitney test) according to 
their previous experience of classifi cation, which 
has been mostly gained with this particular 
method. Similarly, an inexperienced investigator 

might overestimate the achievable error rate of 
methods involving many tuning parameters by 
setting them to values that are known to the 
experts as suboptimal.

The connection between classifi ers 
and variable selection
When performed as a preliminary step, e.g. for 
computational reasons, variable selection should 
be seen as a part of classifier construction. In 
particular, when a classifier is built using a 
learning data set and tested subsequently on an 
independent test data set, variable selection 
must be performed based on the learning set 
only. Otherwise, one should expect non-
negligible positive bias in the estimation of 
prediction accuracy. In the context of microar-
ray data this problem was first pointed out by 
Ambroise and McLachlan (2002). Although it 
is obvious that test observations should not be 
used for variable selection, variable selection is 
often (wrongly) carried out as a “preliminary” 
step, especially when classification accuracy is 
measured using leave-one-out cross-validation. 
Even if performing t-tests or Wilcoxon tests 
n × p times becomes a daunting task when 
p reaches several tens of thousands, preliminary 
variable selection using all n arrays and leaving 
no separate test set for validation should defi ni-
tively be banished. Bad practice related to this 
aspect has probably contributed to much “noise 
discovery” (Ioannidis, 2005).

A further important connection between clas-
sifi ers and variable selection is the use of classifi ers 
to evaluate the infl uence of single variables on the 
response class a posteriori. Parametric models, 
such as the logistic regression model, provide 
parameter estimates for main effects and interac-
tions of predictor variables that can be interpreted 
directly for this purpose. However, the modern 
nonparametric approaches from machine learning, 
e.g. random forests, also provide variable impor-
tance measures that can be used not only for the 
preselection of relevant variables (Diaz-Uriarte 
and de Andrés, 2006) but are also a means of 
evaluating the infl uence of a variable both indi-
vidually and in interactions on the response. 
Random forest variable importance measures have 
thus become a popular and widely used tool in 
genetics and related fi elds. However, when the 
considered predictor variables vary in their scale 
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of measurement or their number of categories, as, 
e.g. when both genetic and clinical covariates are 
considered, the computation of the variable impor-
tance can be biased and must be performed differ-
ently (Strobl et al. 2007).

3 Measures of Classifi cation
Accuracy
We have seen in the previous section that in large-
scale association studies classifi cation can either 
be conducted with previous variable selection, 
dimension reduction, or with special classifi cation 
methods that can deal with small n large p problems 
by intrinsically performing variable selection. 
However, these methods are very diverse, both in 
their methodological approach and their statistical 
features. In the following, we review concepts that 
allow to evaluate and compare all these different 
strategies and models and are adaptable to special 
needs of investigators, e.g. if asymmetric mis-
classifi cation costs are supposed to be modelled.

Error rate
We consider the random vector X ∈Rp and the 
random variable Y ∈ {0, …, K – 1} giving the 
“class membership”. Let F denote the joint distri-
bution function of X and Y. A classifi er is a function 
from Rp to {0, …, K – 1} that assigns a predicted 
class to a vector of gene expressions corresponding 
to a patient:

 
{ }: 0, , 1
ˆ,

→ −

→

…

X

pC K

Y

\
 (1)

where X denotes the p-vector giving the gene 
expression levels of the p considered variables for 
one patient and Ŷ  is his or her predicted class. If 
the joint distribution F(X, Y ) of the gene expres-
sions X and the class membership Y were known, 
one could use it to construct the Bayes classifi er

 C P Y kBayes
k

X X( ) ( )= arg max = | ,  (2)

by deriving the posterior distribution P(Y | X) of 
the response class given the gene expressions X. 
The Bayes classifi er CBayes based on the true, but 
unfortunately unknown, distributions minimizes 
the theoretical error rate, i.e. the probability of 
classifying into the wrong class:

 
Err C P C Y

E I C Y

( ) ( )

( ) .

= F

F

X

X

≠( )
= ≠( )( )  (3)

Note that this and all following defi nitions of 
error rates are appropriate in the case of unordered 
response classes only. For ordinal response classes 
it may be desirable that misclassifi cation in a more 
distant class affects the error term more severely 
than misclassifi cation in a neighboring class, which 
could be modelled via pseudo-distances serving as 
weights in the computation of the error rate. For 
classifi ers that return class probabilities instead of 
predicted class membership, such as Bayesian 
methods but also some versions of recursive par-
titioning, the difference between the predicted class 
probability and the true class membership can be 
computed, e.g. by the Brier Score (i.e. the quadratic 
distance, see, e.g. Spiegelhalter, 1986, for an intro-
duction).

Since the theoretical joint distribution F is 
always unknown in real data analysis, the classifi er 
has to be estimated from an available data set. 
Moreover, once a classifi er is constructed, its error 
rate also has to be estimated from some available 
data. Hence, the estimation of the error rate of a 
classification method involves two estimation 
components. Suppose we have a data set including 
n patients whose class membership has been deter-
mined independently of gene expression data, e.g. 
by clinical examination. The available data set D = 
(d1, …, dn) consists of n identically distributed 
independent observations di = (yi, xi), where 
yi ∈ {0, …, K–1} denotes the class membership 
and xi = (xi1 , …, xip)T the p-vector of gene expres-
sions of the i-th patient.

The data set used to construct (i.e.“learn”) a 
classifi er is usually denoted as “training” or “learn-
ing” data set. In this article, we use the term learning 
data. Let l = (l1 , …, lL) denote the indices of patients 
included in the learning data set and Dl = (dl1, …, dlL) 
the corresponding data set, where L is the number of 
observations in l. In practice, there are several ways 
to defi ne l and t, see Section 4. A classifi cation 
method takes the learning data set Dl as input and 
learns a classifi er function C as defi ned in Eq. (1). 
From now on, CM

D1
 denotes the classifi er learnt from 

the data set Dl using the classifi cation method M. 
Examples of classifi cation methods are, e.g.“SVM 
with linear kernel without preliminary variable selec-
tion” or “linear discriminant analysis with the 20 best 
variables according to the t-test”.

Cancer Informatics 2008:6 



83

Evaluating microarray-based classifi ers

In practical studies, investigators are often 
interested in the true error rate of a classifi er built 
with all the available observations:

 Err CM
D( ) ,  (4)

where D is considered as fi xed, hence the term 
conditional error rate. However, D can also be 
considered as random. The unconditional (or 
expected) true error rate is defi ned as

 �
F F Dn n
M ME Err C= ( )( ) ,  (5)

where Fn describes the multivariate distribution of 
D based on F(X, Y ). The unconditional error rate 
�

Fn
M  depends only on the classifi cation method M, 

the size n of the used data set and the joint distribu-
tion F of X and Y , but not on the specifi c data set 
D. We use the notation � instead of Err to outline 
the difference between conditional and uncondi-
tional error rate. Few articles distinguish between 
the two. However, the relative performance of error 
estimation methods may depend on whether one 
considers the conditional or unconditional error 
rate, see Section 4 for some examples.

Estimating the error rate
Suppose we use a learning set Dl to construct the 
classifi er CM

D1
. The joint distribution function F 

being unknown, the true conditional error rate

 Err C E I Y CM M
D F 11 1

X D( ) = ≠ ( )( )( )D  (6)

of this classifi er is also unknown and has to be 
estimated based on available test data. Similarly 
to l above, collecting the indices corresponding to 
the learning data set, we consider the T-vector 
t = (t1, …, tT ) giving the indices of test observations 
and Dt = (dt1

, …, dtT
) the corresponding data set. 

The estimator of the error rate of C based on Dt is 
then given as

 �Err C
T

I y CM
t

M
t

i

T

i iD t D1 1
, ,D( ) = ≠ ( )( )

=
∑1

1

x  (7)

where xti = (xti1
, …, xti p

) is the p-vector giving the 
gene expressions for the ti-th observation. Note that, 
in simulations, the learning set Dl can be varied 

and the test data set Dt may be virtually as large as 
computationally feasible, thus providing an accu-
rate estimation of Err (CM

D1
).

Sensitivity and specifi city
Using the error rate as defi ned in Eq. (6), one 
implicitly considers all misclassifications as 
equally damaging. In practice, the proportion of 
misclassifi ed observations might not be the most 
important feature of a classifi cation method. This 
is particularly true if one wants to predict therapy 
response. If a non-responder is incorrectly classi-
fi ed as responder, possible inconveniences are the 
potentially severe side-effects of a useless therapy 
and—from an economic point of view—the cost 
of this therapy. On the other hand a responder who 
is incorrectly classifi ed as nonresponder may be 
refused an effective therapy, which might lead to 
impairment or even death.

In the medical literature, these two different 
aspects are often formulated in terms of sensitivity 
and specifi city. If Y = 1 denotes the condition that 
has to be detected (for instance responder to a 
therapy), the sensitivity of the classifi er is the prob-
ability P(CM

D1
 (X) = 1 | Y = 1) of correctly identifying 

a responder. It can be estimated by the proportion 
of observations from the test data set with Y = 1 
that are correctly predicted:
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whereas the specifi city is the probability P(CM
D1

 (X) = 
0 | Y = 0) of correctly identifying a non-responder 
and can be estimated by the proportion of observa-
tions with Y = 0 that are correctly predicted:
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Related useful concepts are the positive predictive 
value and the negative predictive value, which depend 
on the prevalence of the condition Y = 1 in the popu-
lation. It does not make sense to calculate them if the 
class frequencies for the considered n patients are not 
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representative for the population of interest, as is often 
the case in case-control studies.

Decision theoretic aspects
When considering sensitivity and specifi city it can 
be interesting to incorporate the idea of cost or loss 
functions from decision theory to evaluate misclas-
sifi cation costs. Instead of the error rate defi ned in 
Eq. (7), where a neutral cost function is used 
implicitly, one could use other cost functions, 
where the costs and thus the weights in the com-
putation of the error rate, are defi ned depending of 
the relative seriousness of misclassifi cations.

More precisely, a neutral, often referred to as 
scientifi c cost function assigns unit costs whenever 
an observation is misclassifi ed (regardless of the 
true and predicted class), and no costs when the 
observation is correctly classifi ed. However, if, for 
instance, classifying an observation with Y = 1 as 
Y = 0 is more serious than vice-versa, such errors 
should have more weight, i.e. higher misclassifi ca-
tion costs. Many classifi ers allow to assign such 
asymmetric misclassifi cation costs, either directly 
or via class priors. The following principle is obvi-
ous for Bayesian methods, where different prior 
weights may be assigned to the response classes, 
but also applies to, e.g. classifi cation trees. Imagine 
that there are much more observations in class 0 
than in class 1. Then, in order to reduce the number 
of misclassifi cations predicting class 1 for all 
observations—regardless of the values of the pre-
dictor variables—would be a pretty good strategy, 
because it would guarantee a high number of cor-
rectly classifi ed observations.

This principle can be used to train a classifi er 
to concentrate on one class, even if the proportions 
of class 0 and 1 observations in the actual popula-
tion and data set are equal: one either has to “make 
the classifi er believe” that there were more obser-
vations of class 0 by means of setting a high arti-
fi cial prior probability for this class, or one has to 
“tell” the classifi er directly that misclassifi cations 
of class 0 are more severe by means of specifying 
higher misclassification costs (cf, e.g. Ripley, 
1996). Obviously, such changes in the prior prob-
abilities and costs, that are internally handled as 
different weights for class 0 and 1 observations, 
affect sensitivity and specifi city. For example, 
when misclassifi cation of a responder as a non 
responder is punished more severely than vice-
versa, the sensitivity (for correctly detecting a 
responder) increases, while at the same time the 

specifi city (for correctly identifying a non-responder) 
decreases, because the classifi er categorizes more 
observations as responders than under a neutral 
cost scheme.

From a decision theoretic point of view, what 
we considered as costs so far were actually 
“regrets” in the sense that the overall costs, e.g. for 
diagnosing a subject, were not included in our 
reasoning: only the particular costs induced by a 
wrong decision were considered, while the costs 
of correct decisions were considered to be zero. 
This approach is valid for the comparison of clas-
sifi ers because the additional costs, e.g. for diag-
nosing a subject are equal for all classifi ers.

ROC curves
To account for the fact that the sensitivity and 
specifi city of a classifi er are not fi xed characteris-
tics, but are infl uenced by the misclassifi cation cost 
scheme, the receiver operating characteristic 
(ROC) approach (cf, e.g. Swets, 1988, for an intro-
duction and application examples) could be bor-
rowed from signal detection, and could be used for 
comparing classifi er performance, incorporating 
the performance under different cost schemes. 
Then, for each classifi er a complete ROC curve 
describes the sensitivity and specifi city under dif-
ferent cost schemes. The curves of two classifi ers 
are directly comparable when they do not intersect. 
In this case the curve that is further from the 
diagonal, which would correspond to random class 
assignment, represents the better classifi er. Confi -
dence bounds for ROC curves can be computed 
(e.g. Schäfer, 1994). The distance from the diagonal, 
measured as the so called area under curve (AUC), 
is another useful diagnostic (Hanley and McNeil, 
1982) and can be estimated via several approaches 
(e.g. DeLong et al. 1988). As an example, Figure 3 
depicts four ROC curves corresponding to different 
prediction strengths. The diagonal corresponds to 
an AUC of 0.5 (random assignment), whereas the 
dotted line yields the optimal value AUC = 1 and 
the two dashed lines represent intermediate cases 
as commonly found in practice.

Credal classifi cation
So far we have considered only the case that the 
classifi er gives a clear class prediction for each 
observation, say 0 or 1. In addition to this we noted 
that some classifi ers may also return predicted class 
probabilities instead. Obviously, when the 
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probability for class 1 is, say, 99% we would 
predict that class without hesitation. However, tree 
classifiers or ensemble methods that perform 
majority voting would also predict class 1 when 
its predicted probability is only, say, 51%—as long 
as the probability for class 1 is higher than that for 
class 0, no matter how little the difference. In such 
a situation one might argue that there should be a 
third option, namely refusing to predict a class 
whenever the predicted probability is within a 
certain threshold or returning the extra value “in 
doubt” (cf Ripley, 1996, p. 5; 17 f.) if further infor-
mation is needed to classify an observation.

Several authors have argued along a similar line, 
for instance the fuzzy set approach by Chianga and 
Hsub (2002), whose classifi er returns the predicted 
degree of possibility for every class rather than a 
single predicted class, and Zaffalon (2002), who 
argues in favor of so-called “credal classifi cation”, 
where a subset of possible classes for each con-
fi guration of predictor variables is returned when 
there is not enough information to predict one 
single class (see also Zaffalon et al. 2003, for an 
application to dementia diagnosis).

After this overview on accuracy measures for the 
comparison of classifi ers, the next section describes 
possible sampling strategies for the evaluation of 
accuracy measures. Suggestions on the use of these 
sampling strategies, as well as a discussion of pos-
sible abuses, are given in Section 5.

4 Evaluation Strategies
For simplicity, we assume in the following that the 
error rate is used as an accuracy measure, but the 

same principles hold for other measures such as 
the sensitivity or the specifi city. The goal of clas-
sifi er evaluation is the estimation of the conditional 
error rate Err (CM

D ) from Eq. (4) or of the uncon-
ditional error rate �

Fn
M  (cf Eq. (5)), where the focus 

on Err CM
D  or �

Fn
M  depends on the concrete context. 

For example, a study that aims at designing a clas-
sifi er based on a particular data set for concrete use 
in medical practice will focus on Err (CM

D ) rather 
than �

Fn
M , whereas a statistical comparison study 

of classifi cation methods should be as general as 
possible, and thus focus on the unconditional error 
rate �

Fn
M . Readers interested in the difference 

between conditional and unconditional error 
rate may refer to Efron and Tibshirani (1997); 
Molinaro et al. (2005). In general, the question 
whether unconditional or conditional inference 
should be preferred is one of the central founda-
tional issues in statistics, where in the frequentist-
Bayesian debate the former usually advocate in 
favor of the unconditional point of view while 
Bayesian inference is eo ipso conditional (cf, e.g. 
Berger, 1980, Section 1.6). Also a view at the 
corresponding discussion in sampling theory on 
evaluating post stratifi cation is illuminating in 
this context (see, e.g. Hold and Smith, 1979, for 
a classical paper).

In this article, we arbitrarily use the notation �̂  
for all the estimators, which refers to the uncondi-
tional error rate. However, the reviewed estimators 
can also be seen as estimators of Err (CM

D ). For each 
method, we denote the estimator in a way that all 
the quantities infl uencing it are visible. These 
expressions, and the corresponding formulas, 
should be understood as pseudo-code to be used 
for implementing the procedure.

In addition, all the methods reviewed in the 
present section are summarized in Table 1.

Resubstitution
The easiest—and from a statistical point of view 
by far the worst—evaluation strategy consists of 
building and evaluating a classifi er based on the 
same data set Dl. Usually, the data set Dl includes 
all the available data, i.e. Dl = D, yielding the 
estimator
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Figure 1. Examples of ROC curves.
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ˆM
RESUB�  is a downwardly biased estimator of �

Fn
M  

and Err (CM
D ), i.e. accuracy is overestimated. Since 

the constructed classifier CM
D  was especially 

designed to fi t D, it usually performs well on it. 
The problem of overfi tting, i.e. that the classifi er 
is too closely adapted to the learning sample, is not 
specifi c to microarray data, but it can be enhanced 
by their high dimensionality: with a huge number 
of predictor variables, a very subtle partition of the 
feature space can be achieved, yielding distinct 
predictions for very small groups of observations. 
In such a situation it is possible to fi nd a prediction 
rule such that almost all observations from the 
learning data set are predicted correctly. However, 
this does not imply that the prediction rule that is 
highly adapted to the learning data set will also 
predict independent new observations correctly.

Test data set
To evaluate the performance of a classifi cation 
method on independent observations, one should 
consider non-overlapping learning and test data sets. 
A classifi er is built based on the learning data set 
only and subsequently applied to the test observa-
tions. If, as above, l and t contain the indices of the 
observations included in the learning and test data 
sets, respectively, the error rate is estimated as
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where T denotes the size of t. In practice, l and 
t most often form a partition of {1, …, n}, i.e. 

t = {1, …, n}\ l  and M
TEST�  can be seen as a function 

of D and l only. However, we keep the notation as 
general as possible by including t in M

TEST�  (D, (l, t)), 
in order to allow the specifi cation of learning and 
test sets that do not form a partition of {1, …, n} 
(for instance, when there are two different test data 
sets). Note that, in contrast to resubstitution, this 
procedure may have a random component: it 
depends on the learning and test sets defi ned by 
(l, t). When l and t are not defi ned randomly but 
are chosen by the user (e.g. chronologically where 
the fi rst recruited patients are assigned to l and the 
following patients to t), ˆTEST�  depends on the num-
ber of patients in l, which is fi xed by the user.

Note that, due to the fact that some of the obser-
vations from the learning data set are held back for 
the test set and thus the learning data set contains 
only L � n observations, the estimation of the 
prediction rule from the learning data set is worse 
and the resulting prediction error increases. There-
fore ˆM

TEST�  has positive bias as an estimator of �
Fn
M

and Err (CM
D ), i.e. the obtained prediction accuracy 

is worse than if all n observations were used. This 
effect does not only occur here, where the original 
learning data set is split into one learning and test 
set, but also in the following sections whenever 
the number of observations in the learning data set 
is decreased. The 0.632 estimator introduced below 
addresses this problem. For a discussion of poten-
tial changes in the data generating process over 
time see Section 5.

Cross-validation
Another option to evaluate prediction accuracy 
consists of considering all the available observa-
tions as test observations successively in a 

Table 1. Summary of the reviewed evaluation strategies. Iterations: number of iterations, i.e. number of times 
a classifi er is constructed and applied to data; u.d.= user-defi ned. Bias: Bias of the error estimation; ↑ means 
positive bias, i.e. underestimation of prediction accuracy and vice-versa. Principle: Gives the defi nition of the 
learning and test sets or the used combination of methods.

 Iterations Bias Principle
Resubstitution 1 ↓ l = t = {1, …, n}
Test 1 ↑ {l, t} from a partition of {1, …, n}
LOOCV n – t( j ) = { j }, l( j ) = {1, …, n}\{ j },for j = 1, …, n
m-fold-CV m ↑ t(1), …, t(m) from a partition of {1, …, n}
   l( j ) = {1, …, n}\ t( j ), for j =1, …, m}
MCCV B (u.d.) ↑ {l(b), t(b)} from a partition of {1, …, n}, for b = 1, …, B
Bootstrap B (u.d.) ↑ l∗(b) is a bootstrap sample drawn out of {1, …, n}
    t∗(b) = {1, …, n}\l∗(b), for b = 1, …, B
0.632,0.632+ B (u.d.) – Weighted sum of resubstitution and bootstrap error rates.
Bootstrap-CV nB (u.d) – LOOCV within B bootstrap samples.
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procedure denoted as cross-validation (CV), see 
e.g. Hastie et al. (2001) for an overview. The avail-
able observations {1, …, n} are divided into m 
non-overlapping and approximately equally sized 
subsets whose indices are given by t(1), …, t(m). The 
cross-validation procedure consists of a succession 
of m iterations, hence the name m-fold cross-
validation. In the j-th iteration, the observations 
defi ned by t(   j ) are considered as test data and the 
remaining observations form the learning data set 
defi ned by l(          j ) = {1, …, n}\t( j ). The test observations 
from Dt ( )j  are then predicted with the classifi er 
C j

M
D1 ( )  constructed using D

1( )j .
A prediction is thus obtained for each of the n 

observations. The error rate is estimated as the 
mean proportion of misclassifi ed observations over 
all cross-validation iterations:
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This formula simplifi es to
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if t(1), …, t(m) are equally sized. Note that l( j) does 
not appear as an argument of �CV

M , since l( j) is derived 
deterministically from t( j) as l( j) = {1, …,  n}\t( j).

In this setting again decision theoretic consider-
ations could be very helpful, leading to criteria 
going beyond the mere averaging of misclassifi ed 
observations. For instance, a more conservative 
approach inspired by the minimax-decision crite-
rion would be to consider for each classifi er the 
maximum, instead of the average, proportion of 
misclassifi ed observations over all cross-validation 
samples and fi nally choose the classifi er with the 
minimal maximum proportion of misclassifi ed 
observations over all classifi ers. This approach 
could be called for in situations where not the aver-
age or expected performance is of interest but rather 
it is necessary to guarantee that a certain perfor-
mance standard is held even in the worst case.

An important special case of cross-validation 
is m = n, where t( j) = j, i.e. the n observations are 
considered successively as singleton test data sets. 

This special case is usually denoted as leave-one-out 
cross-validation (LOOCV), since at each iteration 
one observation is left out of the learning data set. 
The corresponding error rate estimator can be 
expressed as
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LOOCV is deterministic, in contrast to cross-
validation with m � n which possibly yields dif-
ferent results depending on the (randomly) chosen 
partition t(1), …, t(m). As an estimator of �

Fn
M  and 

Err (CM
D ), ˆM

LOOCV�  (D) is almost unbiased, since 
classifi ers are built based on n – 1 observations. 
However, as an estimator of �

Fn
M , it can have high 

variance because the learning sets are very similar 
to each other (Hastie et al. 2001).

In order to reduce the variability of cross-
validation results due to the choice of the partition 
t(1), …, t(m), it has been proposed to average the results 
of cross-validation obtained for several different 
partitions. As an example, Braga-Neto and Dough-
erty (2004) examine what they denote as CV 10:
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where (t(1)k, …, t(m)k ) is the partition corresponding 
to the k-th cross-validation. Note that, like, ˆM

CV� , 
the estimator 10ˆM

CV�  has a random component. 
However, its variance is reduced by averaging over 
several partitions.

In stratifi ed cross-vlalidation, each subset t(j) 
contains the same proportion of observations of 
each class as the whole data set. It is well-
established that stratifi ed cross-validation improves 
the estimation of the error rate.

Monte-Carlo cross-validation
(or subsampling)
Like cross-validation, Monte-Carlo cross-
validation (MCCV) strategies consist of a succes-
sion of iterations and evaluate classifi cation based 
on test data sets that are not used for classifi er 
construction. It may be seen as an averaging of the 
test set procedure over several splits into learning 
and test data sets. In contrast to cross-validation, 
the test sets are not chosen to form a partition of 
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{1, …, n}. In Monte-Carlo cross-validation (also called 
random splitting or subsampling), the learning sets l(b) 
(b = 1, …, B) are drawn out of {1, …, n} randomly 
and without replacement. The test sets consist of the 
remaining observations t( j ) = {1, …, n} \l(b). The 
common size ratio n nb b1 t( ) ( ):  is fi xed by the user. 
Usual choices are, e.g. 2 : 1, 4 : 1 or 9 : 1. Each test 
set contains the observations that are not in the 
corresponding learning set. The MCCV error rate 
is given as
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This formula is identical to the formula of ˆM
CV�  

for regular cross-validation, except that the sum-
mation is done with respect to the B random 
subsamples and that ˆM

MCCV�  is considered as a 
function of the learning sets instead of the test 
sets here for consistency with the bootstrap sam-
pling procedure reviewed in the next section. As 
an estimator of �

Fn
M , ˆM

MCCV�  has a smaller variance 
than, e.g. ˆM

LOOCV� , since it is based on learning sets 
that are not as highly correlated as those of 
LOOCV. However, ˆM

MCCV�  is again upwardly 
biased as an estimator of both �

Fn
M  and Err (CM

D ), 
i.e. accuracy is underestimated, since the predic-
tion rules are constructed based on less than n 
observations.

Bootstrap sampling
In bootstrap sampling, the learning sets l*(b) are 
drawn out of {1, …,  n} randomly and with replace-
ment. The * symbol indicates that each observation 
may be represented several times in l*(b). The 
(common) size of the learning sets is most often 
set to n. Hence, each l*(b) includes an average of 
1 − (1 − 1/n)n ≈n  → ∞ 63.2% of the n observations at 
least once. The test sets t(b) are again formed by 
the observations which are not in the correspond-
ing learning set l*(b). Note that each test may have 
a different number of observations. In each of the 
B bootstrap iterations, the learning data set is used 
to construct a classifi er C b

M
D1*( ) that is subsequently 

applied to the test set Dt ( )j . There are several vari-
ants for estimating the error rate based on these 
results. The fi rst variant consists of considering all 
the predictions simultaneously and computing the 
global error as
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with
 Ii

b( )  =  0 if observation i is included in the 
learning set l*(b) at least once,

  = 1 else.
Note that the MCCV error estimator presented 

in the previous section may also be expressed in 
this way. In contrast, the second bootstrap variant 
considers each observation individually and esti-
mates the error rate as
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where ˆ
iE  is the averaged individual error rate of 

observation i over the iterations:
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These two variants agree when B → 0 and usu-
ally produce nearly identical results (Efron and 
Tibshirani, 1997).

Note that the principle of bootstrap learning 
samples that determine their own test samples (the 
observations not included in the current bootstrap 
sample, also called “out-of-bag” observations) is 
also incorporated in the recent ensemble methods 
bagging (Breiman, 1996) and random forests 
(Breiman, 2001). Here the prediction accuracy of 
ensembles of classifi ers learned on bootstrap samples 
is evaluated internally on the out-of-bag observa-
tions. Therefore these methods have a built-in control 
against overoptimistic estimations of the error rate.

The 0.632 and 0.632+ estimators
Bootstrap estimators of the error rate are upwardly 
biased, since classifi ers are built using on average 
only 63.2% of the available observations. That is 
why Efron and Gong (1983) suggest an estimation 
procedure that combines the bootstrap sampling 
error rate and the resubstitution error rate. They 
defi ne the 0.632 estimator as
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which is designed to correct the upward bias in
1ˆ BOOT�  by averaging it with the downwardly biased 

resubstitution error rate ˆM
RESUB� . The 0.632+ estima-

tor is suggested by Efron and Tibshirani (1997) as 
a less biased compromise between resubstitution 
and bootstrap errors designed for the case of strongly 
overfi tting classifi ers. These estimates have lower 
bias than MCCV or simple bootstrap sampling 
estimates. Their principle is generalized to survival 
prediction by Gerds and Schumacher (2007).

Bootstrap cross-validation
Fu et al. (2005) suggest an approach denoted as 
bootstrap cross-validation combining bootstrap 
estimation and LOOCV. The resulting error rate 
estimator can be seen as a bagging predictor, in the 
sense that the fi nal error rate estimate results from 
the combination of several (LOOCV) estimates 
based on bootstrap samples. For each of the B 
bootstrap samples, LOOCV is carried out. Error 
estimation is then obtained by averaging the 
LOOCV result over the B bootstrap iterations.

Since bootstrap samples have duplicates, learn-
ing and test sets may overlap for the corresponding 
CV iterations. Fu et al. (2005) claim that such an 
overlapping should be seen as an advantage rather 
than a disadvantage for small samples, since cor-
recting the upward bias of bootstrap error estima-
tion. Bootstrap cross-validation is reported to 
perform better than bootstrap and the 0.632 and 
0.632+ estimators (Fu et al. 2005).

In this section, we have mainly focused on the 
potential bias of error rate estimation approaches. 
The estimation of the variance of these estimators, 
which is a very complex task in the case of small 
samples, is addressed in several recent articles. For 
instance, Berrar et al. (2006) consider the problem 
of comparisons between several error rates 
(involving a multiple testing component) and 
confidence intervals for error rates, whereas 
Wickenberg-Bolin et al. (2006) suggest an 
improved variance estimation method for small 
sample situations. Another aspect to be considered 
when interpreting error rates is the comparison to 
error rates obtained using different variants of 

trivial random classifi ers, see Wood et al. (2007) 
for a thorough discussion of this topic.

5 Which Evaluation Scheme
in Which Situation?
The evaluation of classifi cation methods may have 
various goals. One goal may be to compare several 
classifi cation methods from a methodological point 
of view and explain observed differences (for 
instance, Dudoit et al. 2002; Romualdi et al. 2003; 
Statnikov et al. 2005). Medical or biological arti-
cles on the other hand are concerned with the 
performance on future independent data of the best 
classifi er, which should be selected following a 
strict procedure (typically one of those used in the 
comparison studies mentioned above).

For that selection procedure, resubstitution 
should never be employed, since yielding far too 
optimistic estimates of accuracy. Even if the goal 
is to compare different methods rather than to 
estimate the absolute prediction accuracy, resub-
stitution turns out to be inappropriate, since artifi -
cially favoring those methods that overfit the 
learning data. Hence, an inescapable rule is that 
classifi ers should not be evaluated only on the same 
data set they were trained on.

In this context, the above warning should be 
repeated. A classical fl aw encountered in the litera-
ture consists of selecting variables based on the 
whole data set and building classifi ers based on this 
reduced set of variables. This approach should be 
banned, see Ambroise and McLachlan (2002); 
Simon et al. (2003); Wood et al. (2007) for studies 
on this topic. Even (and especially) when the num-
ber of variables reaches several tens of thousands, 
variable selection must be carried out for each split-
ting into learning and test data sets successively.

Cross-validation, Monte-Carlo
cross-validation and bootstrap
for classifi ers comparison
In a purely statistical study with focus on the 
comparison of classification methods in high 
dimensional settings, it is not recommended to 
estimate prediction accuracy based on a single 
learning data set and test data set, because for limited 
sample sizes the results depend highly on the 
chosen partition (cf, e.g. Hothorn et al. 2005). From 
a statistical point of view, when the original learn-
ing data set is split into one learning and one test 
set, increasing the size of the test set decreases the 
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variance of the prediction accuracy estimation. 
However, it also decreases the size of the leftover 
learning data set and thus increases the bias, since 
using less observations than available for learning 
the prediction rule yields an artifi cially high and 
variable error. In the case of a very small n, this 
might even lead to the too pessimistic conclusion 
that gene expression data do not contribute to pre-
diction. Procedures like cross-validation, Monte-
Carlo cross-validation or bootstrap sampling may 
be seen as an attempt to decrease the estimation 
bias by considering larger learning sets, while lim-
iting the variability through averaging over several 
partitions into learning and test data sets.

Contradicting studies have been published on 
the comparison of CV, MCCV and bootstrap strat-
egies for error rate estimation. The use of CV 
(Eq. (14)) in small sample settings is controversial 
(Braga-Neto and Dougherty, 2004) because of its 
high variability compared to MCCV (Eq. (18)) or 
bootstrap sampling (Eq. (19–20)). For instance, 
in the case of n = 30, each observation accounts 
for more than 3% in the error rate estimation. For 
a data set in which, say, at most three patients are 
diffi cult to classify, CV does not allow a fair com-
parison of classifi cation methods. Braga-Neto and 
Dougherty (2004) recommend bootstrap strategies 
or repeated CV (denoted as CV10 in the present 
article, see Eq. (17)) as more robust alternatives. 
In contrast, another study by Molinaro et al. (2005) 
taking small sample size and high-dimensionality 
into account reports good performance for LOOCV 
estimation, as well as for 5- and 10-fold CV. The 
low bias of LOOCV, its conceptual simplicity as 
well as the fact that it does not have any random 
component make it popular in the context of 
microarray data. Meanwhile, it has become a 
standard measure of accuracy used for comparing 
results from different studies. However, if one 
wants to use CV, a more recommendable approach 
consists of repeating cross-validation several 
times, i.e. with different partitions t(1), …, t(m), 
when m can take the values, e.g. m = 5 or m = 10. 
Averaging over several partitions reduces the vari-
ance associated with cross-validation (Braga-Neto 
and Dougherty, 2004).

Stable estimates of prediction accuracy can also 
be obtained via MCCV or bootstrap sampling. In 
MCCV, the choice of the ratio nl : nt might depend 
on the goal of the study. If the goal is comparison 
only, a ratio like 2 : 1 may be appropriate. If one 
is not only interested in the relative performance 

of the methods but also in the value of the prediction 
accuracy itself, larger learning sets are conceivable. 
However, for both CV and MCCV/bootstrap, it 
must be recalled that the estimate of prediction 
accuracy always tends to be pessimistic compared 
to the prediction accuracy that would be obtained 
based on the n observations, since less than n 
observations are used for classifi er construction. 
Less biased estimators such as 0.632+ are recom-
mended if the absolute value of the error rate is of 
importance. However, a very recent study points 
out a possible bias of bootstrap procedures in favor 
of more complex prediction models (Binder and 
Schumacher, 2007), which may affect the com-
parison of methods.

When on the other hand the aim of a benchmark 
study is a complete ranking of all considered clas-
sifi ers with respect to any performance measure the 
Bradley-Terry(-Luce) model for paired comparisons 
(Bradley and Terry, 1952) or the recent approach of 
Hornik and Meyer (2007) for consensus rankings 
are attractive. In addition to the purely descriptive 
ranking of these approaches statistical inference on 
the performance differences between classifi ers can 
be conducted when the test samples are drawn 
appropriately, e.g. when several CV- or bootstrap-
samples are available (Hothorn et al. 2005).

Validation in medical studies
In medical studies, the problem is different. Inves-
tigators are not interested in the methods them-
selves but in their practical relevance and validity 
for future independent patient data. The addressed 
questions are:
1. Can reliable prediction be performed for new 

patients?
2. Which classifi cation method should be used on 

these new data?
Whereas the second question is basically the same 
as in statistical studies, the fi rst question is most 
often ignored in statistical papers, whose goal is 
rather to compare methods from a theoretical point 
of view than to produce “ready-to-use” classifi ers 
to be used in medical practice.

Question 1 can be answered reliably only based 
on several, or one large, validation data set that has 
been made available to the statistician after con-
struction and selection of an appropriate classifi er. 
A validation set that remains unopened until the 
end of the analysis is necessary, in the vein of the 
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validation policy developed by the Sylvia Lawry 
Centre for Multiple Sclerosis Research (Daumer 
et al. 2007).

Choice of the validation data set
The impact of the reported classifi er accuracy in 
the medical community increases with the dif-
ferences between validation data set and open 
data set. For example, it is much more diffi cult 
to find similar results (and thus much more 
impressing when such results are found) on a 
validation data set collected in a different lab at 
a different time and for patients with different 
ethnic, social or geographical background than 
in a validation set drawn at random from a homo-
geneous data set at the beginning of the analysis. 
An important special case is when the learning 
and validation sets are defi ned chronologically. 
In this scheme, the fi rst recruited patients are 
considered as learning data and used for classifi er 
construction and selection before the validation 
data set is collected, hence warranting that the 
validation data remain unopened until the end of 
the learning phase. Obviously, evaluating a clas-
sifi er on a validation data set does not provide an 
estimate of the error rate which would be obtained 
if both learning and validation data set were used 
for learning the classifi er. However, having an 
untouched validation data set is the only way to 
simulate prediction of new data. See Simon 
(2006) for considerations on the validation prob-
lem in concrete cancer studies and Buyse et al. 
(2006) for details on the validation experiments 
conducted to validate the well-known 70-gene 
signature for breast cancer outcome prediction 
by (van’tVeer et al. 2002).

Furthermore, if the learning and test sets are 
essentially different (e.g. from a geographical or 
technical point of view), bad performance may be 
obtained even with a classifi er that is optimal with 
respect to the learning data. The error rate on the 
validation set increases with i) the level of inde-
pendence between Y and X in both learning and 
validation sets, ii) the difference between the joint 
distribution F of Y and X in the learning and vali-
dation sets, iii) the discrepancy between the opti-
mal Bayes classifi er and the constructed classifi er. 
Whereas the components i) and iii) are common 
to all methods of accuracy estimation, component 
ii) is specific to validation schemes in which 
“validation patients” are different from “learning 
patients”.

Thus, it does make a difference whether the 
learning and test sets are (random) samples from 
the same original data set, or if the test set is 
sampled, e.g. in a different center in a multi-center 
clinical trial or at a different point in time in a 
long-term study. The fi rst case—ideally with ran-
dom sampling of the learning and test sets—
corresponds to the most general assumption for all 
kinds of statistical models, namely the “i.i.d.” 
assumption that all data in the learning and test sets 
are randomly drawn independent samples from the 
same distribution and that the samples only vary 
randomly from this distribution due to their limited 
sample size. This common distribution is often 
called the data generating process (DGP). A clas-
sifi er that was trained on a learning sample is sup-
posed to perform well on a test sample from the 
same DGP, as long as it does not overfi t.

A different story is the performance of a classi-
fi er learned on one data set and tested on another 
one from a different place or time. If the classifi er 
performs badly on this kind of test sample this can 
have different reasons: either important confounder 
variables were not accounted for in the original 
classifi er, e.g. an effect of climate when the clas-
sifi er is supposed to be generalized over different 
continents (cf Altman and Royston, 2000, who state 
that models may not be “transportable”), or—even 
more severe for the scientist—the DGP has actually 
changed, e.g. over time, which is an issue discussed 
as “data drift”, “concept drift” or “structural 
change” in the literature. In this latter case, rather 
than discarding the classifi er, the change in the data 
stream should be detected (Kifer et al. 2004) and 
modelled accordingly—or in restricted situations 
it is even possible to formalize conditions under 
which some performance guarantees can be proved 
for the test set (Ben-David et al. 2007).

When on the other hand the ultimate goal is to 
fi nd a classifi er that is generalizable to all kinds of 
test sets, including those from different places or 
points in time, as a consequence we would have to 
follow the reasoning of “Occam’s razor” for our 
statistical models: the sparsest model is always the 
best choice other things being equal. Such argu-
ments can be found in Altman and Royston (2000) 
and, more drastically, in Hand (2006), who uses 
this argument not only with respect to avoiding 
overfi tting and the inclusion of too many covari-
ates, but also, e.g. in favor of linear models as 
opposed to recursive partitioning, where it is, 
however, at least questionable from our point of 
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view, if the strictly linear, parametric and additive 
approach of linear models is really more “sparse” 
than, e.g. simple binary partitioning.

Recommendations
With respect to the fi rst question posed at the begin-
ning of this subsection we therefore have to con-
clude that there are at least one clinical and 
one—if not a dozen—statistical answers, while for 
the second question we have a clear recommenda-
tion. Question 2 should be addressed based on the 
open learning data set only via cross-validation, 
repeated cross-validation, Monte-Carlo cross-
validation or bootstrap approaches. The procedure 
is as follows:
1. Defi ne Niter pairs of learning and test sets (1( j), 

t( j)),  j = 1, …,  Niter following one of the evalu-
ation strategies described in Section 4 (LOOCV, 
CV, repeated CV, MCCV, bootstrap, etc). For 
example, in LOOCV, we have Niter = n.

2. For each iteration ( j = 1, …,  Niter), repeat the 
following steps:

• Construct classifi ers based on l( j) using 
different methods M1,M2,...,Mq succes-
sively, where Mr (r = 1, …,  q) is defi ned 
as the combination of the variable selection 
method (e.g. univariate Wilcoxon-based 
variable selection), the number of selected 
variables (e.g. p ∼ = 50, 100, 500) and the 
classification method itself (e.g. linear 
discriminant analysis).

• Predict the observations from the test set 
t( j) using the constructed classifiers 
C Cj

M
j

Mq
D D1 1( ) ( ), ,1 …  successively.

3. Estimate the error rate based on the chosen 
procedure for all methods M1, …, Mq succes-
sively.

4. Select the method yielding the smallest error 
rate. It should then be validated using the obser-
vations from the independent validation set.

A critical aspect of this procedure is the choice of 
the “candidate” methods M1, …, Mq. On the one 
hand, trying many methods increases the probability 
to fi nd a method performing better than the other 
methods “by chance”. On the other hand, obvi-
ously, increasing the number of methods also 
increases the chance of fi nding the right method, 
i.e. the method that best refl ects the true data struc-
ture and is thus expected to show good performance 
on independent new data as well.

CV, MCCV or bootstrap procedures might also 
be useful in medical studies for accuracy estima-
tion, but their results should not be over-
interpreted. They give a valuable preview of 
classifi er accuracy when the collected data set is 
still not large enough for putting aside a large 
enough validation set. In this case, one should 
adopt one the following approaches for choosing 
the method parameters:
• Using the default parameter values.
• Selecting parameter values by internal cross-

validation (or a related approach) within each 
iteration (Varma and Simon, 2006). The 
computational complexity is then n2, which 
makes it prohibitive if the chosen classifi cation 
method is not very fast, especially when it 
involves variable selection.

• Selecting parameter values based on solid pre-
vious publications analyzing other data sets.

Trying several values and reporting only the error 
rate obtained with the optimal value is an incorrect 
approach. Studies and discussions on the bias 
induced by this approach can be found in Varma 
and Simon (2006); Wood et al. (2007). In all cases, 
it should be mentioned that such an analysis does 
not replace an independent validation data set.

6 Summary and Outlook
For fair evaluation of classifi ers, the following 
rules should be taken into account.
• The constructed classifi er should ideally be 

tested on a independent validation data set. If 
impossible (e.g. because the sample is too 
small), the error rate should be estimated with 
a procedure which tests the classifi er based 
on data that were not used for its construction, 
such as cross-validation, Monte-Carlo cross-
validation or bootstrap sampling.

• Variable selection should be considered as a step 
of classifi er construction. As such, it should be 
carried out using the learning data only.

• Whenever appropriate, sensitivity and speci-
fi city of classifi ers should be estimated. If the 
goal of the study is, e.g. to reach high sensi-
tivity, it is important to design the classifi er 
correspondingly.

Note that both the construction and the evaluation 
of prediction rules have to be modifi ed if the outcome 
is not, as assumed in this paper, nominal, but ordinal, 
continuous or censored. While ordinal variables are 
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very diffi cult to handle in the small sample setting and 
thus often dichotomized, censored survival variables 
can be handled using specifi c methods coping with 
the n � p setting. Since censoring makes the use of 
usual criteria like the mean square error impossible, 
sophisticated evaluation procedures have to be used, 
such as the Brier score (see VanWieringen et al. (2007) 
for a review of several criteria).

Another aspect that has not been treated in the 
present paper because it would have gone beyond 
its scope is the stability of classifi ers and classifi er 
assessment. For instance, would the same classifi er 
be obtained if an observation were removed from 
the data set? How does an incorrect response 
specifi cation affect the classifi cation rule and the 
estimation of its error rate? Further research is 
needed to answer these most relevant questions, 
which affect all microarray studies.

Further research should also consider the fact 
that due to the many steps involved in the experi-
mental process, from hybridization to image 
analysis, even in high quality experimental data 
severe measurement error may be present (see, e.g. 
Rocke and Durbin, 2001; Tadesse et al. 2005; 
Purdom and Holmes, 2005). As a conse-
quence, prediction and diagnosis no longer coin-
cide, since prediction is usually still based on the 
mismeasured variables, while diagnosis tries to 
understand the material relations between the true 
variables. While several powerful procedures to 
correct measurement error are available for regres-
sion models (see, e.g. Wansbeek and Meijer, 2000; 
Cheng and Ness, 1999; Carroll et al. 2006; 
Schneeweiß and Augustin, 2006, for surveys con-
sidering linear and nonlinear models, respectively), 
in the classifi cation context well-founded treatment 
of measurement error is still in its infancy.

A further problem which is largely ignored by 
many statistical articles is the incorporation of 
clinical parameters into the classifi er and the under-
lying question of the additional predictive value of 
gene expression data compared to clinical 
parameters alone. Although “adjustment for other 
classic predictors of the disease outcome [is] essen-
tial” (Ntzani and Ioannidis, 2003), this problem is 
largely ignored by most methodological articles. 
Specifi c evaluation and comparison strategies have 
to be developed to answer this question.
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Appendix A

Overview of software implementing 
classifi cation methods in R
Most methods for microarray-based classifi cation 
are implemented in R (www. R-project.org) which 
has become the standard statistical tool for handling 
high-dimensional genomic data. Simple univariate 
variable selection might be performed, e.g. based 
on the t-test (t.test) or the Mann-Whitney test (wil-
cox.test). Usual classifi ers like logistic regression 
(R function glm), linear discriminant analysis (R 
function lda), quadratic discriminant analysis (R 
function qda) are also accessible in R without load-
ing any particular package. The same holds for PCA 
dimension reduction (R function prcomp). Here is 
a list of specifi c R packages that are of particular 
interest for microarray-based classifi cation and 
freely available without registration.
• pamr package for PAM (Tibshirani et al. 2002)
• penalized package for penalized regression 

approaches: LASSO, L2 (Goeman, 2007)
• glmpath package for LASSO regression (Park 

and Hastie, 2007)
• rda package for regularized discriminant analy-

sis (Guo et al. 2007)
• plsgenomics package for PLS-based classifi ca-

tion (Boulesteix, 2004; Fort and Lambert-
Lacroix, 2005)

• gpls package for generalized partial least 
squares classifi cation (Ding and Gentleman, 
2005)

• e1071 package for SVM

• randomForest for random forests classifi cation 
(Diaz-Uriarte and de Andrés, 2006)

• logitBoost package for logitBoost (Dettling and 
Bühlmann, 2003)

• BagBoosting package for bagboosting (Det-
tling, 2004)

• MADE4 package for classification by the 
“between-group analysis” (BGA) dimension 
reduction method (Culhane et al. 2005)

• pdmclass package for classifi cation using penal-
ized discriminant methods (Ghosh, 2003)

• MLInterfaces package including unifying func-
tions for cross-validation and validation on test 
data in combination with various classifi ers

• MCRestimate package for fair comparison and 
evaluation of classifi cation methods (Ruschhaupt 
et al. 2004)

Packages including functions for gene selection are
• genefi lter package including a function that 

computes t-tests quickly
• WilcoxCV package for fast Wilcoxon based 

variable selection in cross-validation 
(Boulesteix, 2007)

• varSelRF R package for variable selections with 
random forests (Diaz-Uriarte and de Andrés, 
2006)

• GALGO R package for variable selection with 
genetic algorithms (Trevino and Falciani, 2006) 
(http://www.bip.bham.ac.uk/vivo/galgo/ 
AppNotesPaper.htm).

• MiPP package to fi nd optimal sets of variables 
that separate samples into two or more classes 
(Soukup and Lee, 2004; Soukup et al. 2005)
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Appendix B

Summary of six comparison studies
of classifi cation methods
Table 2. Summary of six comparison studies of classifi cation methods. This summary should be considered with 
caution, since not detailing the used variants of the considered methods.

Dudoit et al. (2002)
3 data sets
MCCV 2:1

• Included: LDA, DLDA, DQDA, Fisher, kNN, trees, tree-based ensembles
•  Variable selection: F-statistic

Conclusion: DLDA and kNN perform best
Romualdi et al. (2003)
2 data sets
CV

• Included: DLDA, trees, neural networks SVM, kNN, PAM combined with:
•  Variable selection/dimension reduction: PLS, PCA, soft thresholding, GA/kNN

Conclusion: PLS transformation is recommendable, No classifi er uniformly 
better than the other

Man et al. (2004)
6 data sets
LOOCV, bootstrap

• Included: kNN, PCA+LDA, PLS-DA, neural networks, random forests, SVM
•  Variable selection: F-statistic

Conclusion: PLS-DA and SVM perform best
Lee et al. (2005)
7 data sets
LOOCV, MCCV 2:1

•  Included: 21 methods (e.g. tree ensembles, SVM, LDA, DLDA, QDA, Fisher, PAM)
•  Variable selection: F-statistic, rank-based score, soft thresholding

Conclusion: No classifi er uniformly better than the other, rank-based variable 
selection performs best

Statnikov et al. (2005)
11 data sets
LOOCV, 10-fold CV

•  Included: SVM, kNN, probabilistic neural networks, backpropagation neural 
networks

•  Variable selection: BSS/WSS, Golub et al. (1999), Kruskal-Wallis test
Conclusion: SVM performs best

Huang et al. (2005)
2 data sets
LOOCV

• Included: PLS, penalized PLS, LASSO, PAM, random forests
• Variable selection: F-statistic

•  Random forests perform slightly better
Conclusion: No classifi er uniformly better than the other



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


