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Abstract: We study the small phylogeny problem in the space of multichromosomal genomes under the double cut and 
join metric. This is similar to the existing MGR (multiple genome rearrangements) approach but it allows, in addition to 
inversion and reciprocal translocation, operations of transposition and block interchange. Empirically, with chloroplast and 
mammalian data sets, it fi nds solutions as good as or better than MGR when the latter operations are prohibited. Permitting 
these operations allows quantitatively better solutions where part of the reconstructed ancestral genomes may be included in 
circular chromosomes. We discuss the biological likelihood of transpositions and block interchanges in the mammalian data.

1. Introduction
In this paper we discuss a version of the small phylogeny problem in the metric space of multichromosomal 
genomes under a rearrangement distance metric. The particular metric we use is the double-cut-and-join 
metric (DCJ) [10]. This is similar to the existing MGR approach [2] but it allows, in addition to inversion 
and reciprocal translocation, operations of transposition and block interchange.

Models of genome rearrangement processes have permitted different repertoires of operations. Cer-
tainly, realistic models must account for inversion. They also must allow reciprocal translocations, and 
processes of chromosome fusion and fi ssion, all of which involve transferring an entire telomeric 
(i.e. suffi x or prefi x) region of at least one chromosome.

Other movements of chromosomal fragments, usually not involving telomeres, are widely attested, 
and grouped together under the label of transpositions. They are produced by a variety of processes, 
such as gene duplication followed by the loss of the original copy, or retrotransposition, or recombina-
tion errors.

Of the three true movement rearrangements, inversion, translocation and transposition, only the fi rst 
two, separately or in combination, have proved very amenable to mathematical modeling, as exempli-
fi ed by the Hannenhalli-Pevzner formula for the edit distance between two genomes, i.e. the minimum 
number of operations required to transform one genome into another, and the effi cient algorithm for 
producing such a series of operations. No formula or effi cient algorithm exists for transposition, either 
by itself or in combination with the other two operations. As for other structural genome modifi cations, 
such as duplication of genes or of chromosomal segments, or deletions and insertions, while they are 
also aspects of genomic plasticity and often consequences or causes of movement rearrangements, 
mathematical models of rearrangement are not easily extended to encompass them.

Recently, Yancopoulos et al. [10] introduced the DCJ operation as the basis for generating all the 
movement rearrangements. This allowed for the inclusion of transposition with inversion and translo-
cation in a single model and resulted in a simpler formula for the edit distance and a simpler algorithm 
for recovering a corresponding series of operations. A double cut and join operation simply cuts the 
chromosome in two places and joins the four ends of the cut in a new way.

The DCJ model, however, allows for the generation of a new kind of movement operation, a generalized 
transposition called block interchange, which is not represented in the biological genome rearrangement 
literature, though it has long been studied in the mathematical literature on rearrangement. Both transposi-
tion and block interchange can be thought of as the excision of a fragment, its circularization, together 
counting as one DCJ operation, followed by a second set of cuts, where the circle is not necessarily cut in 
the same place it was originally created through a join, and then reincorporated at a new site in the 

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


70

Adam and Sankoff

Evolutionary Bioinformatics 2008:4 

chromosome. Transpositions and block interchanges 
thus count as two DCJ operations whereas inversions 
and translocations each count as one.

We postpone the question of the biological 
signifi cance of these chromosomal circles to Sec-
tion 8. Yancopoulos et al.’s original publication 
[10] pointed out that the running time of their 
algorithm could be reduced to linear if circles were 
not constrained to be reincorporated into linear 
chromosomes as soon as they were generated. 
Bergeron et al. [1] recently restated the DCJ model 
and produced a simplifi ed (linear) algorithm ignor-
ing the reincorporation constraint and, as in the 
mathematical justifi cation of DCJ in [10], without 
any explicit mention of the particular operations 
of inversion, translocation, transposition, interchange, 
fusion and fi ssion. It is thus the most general existing 
algorithm for movement rearrangements. As it has a 
form which lends itself well to constraints on the 
operations allowed, it can largely emulate other algo-
rithms, e.g. the Hannenhalli-Pevzner algorithm (but 
without taking into account “hurdles” and “knots”)or 
the Yancopoulos-Attie-Friedberg algorithm (at the 
cost of losing its computational effi ciency).

Solutions of the small phylogeny problem in 
rearrangement metric spaces are generally based 
on iterations of a rearrangement median problem, 
namely the inference of an ancestral genome based 
on its three neighbours in a binary phylogeny. All 
indications are that the median problem in any 
rearrangement metric space is likely to be NP-hard 
[3,9]. Thus in Section 2 we present the general 
algorithm for basing a rearrangement phylogeny 
on the median problem, while in Section 3 we 
present a heuristic for the median problem in DCJ 
space. Section 4 discusses ways of avoiding local 
minima of the small phylogeny problem. The rest 
of the paper is devoted to applications to chloro-
plast and mammalian data sets.

2. The Small Phylogeny Problem 
under Rearrangement Distance
Given the quintuple (N,P,n,G,d), where
P is a phylogeny with N labeled terminal nodes,
G is a set containing N genomes, each made up 

of 2n markers partitioned among one or more cir-
cularly or linearly ordered chromosomes; each 
marker is an ordered pair of form (x, y), where the 
“vertices” x and y represent the beginning and end 
of the marker; each genome is associated with one 
of the terminals of P, and

d is a metric (satisfying non-negativity, 
refl exivity, symmetry and the triangle inequality) 
on the set of all possible genomes with n markers.

The small phylogeny problem is to construct a 
set of genomes H to associate with the non-terminal 
nodes of P, such that the phylogenetic tree 
length 

 L d X Y
XY

( ) ( , )H
B

=
∈

∑  (1)

is minimal, where B is the set of branches in P.
In this paper, we consider the simplest struc-

ture for P, namely an unrooted, binary-branching 
tree. All nodes are of degree one (terminals) or 
three (non-terminals). The overall structure of 
our (heuristic) algorithm for minimizing L is as 
follows:
Algorithm Small Phylogeny
input P, G
set L = ∞
initialize H
calculate L' = L(H)
while L' � L

set L = L'
choose an ordering of the elements of H
for each G ∈ H, with neighbours A,B,C

G = Median (A, B, C)
L' = L(H)

end while
Escape from local minimum
output

The initialization step can be important in 
reducing the computing time in the while loop and 
in the Escape routine. An easy initialization, but 
one which does not favour rapid convergence, 
consists of choosing a different random genome 
for each genome in H. A better choice is to set the 
genome equal to the genome of one of the nearest 
terminal nodes.

The Median algorithm is the subject of Section 3.
The choice of ordering of H is not of major 

importance. The order can be fi xed at the outset once 
and for all, or it may change before each pass of H 
in the hope of avoiding a poor local minimum.

The Escape routine is the subject of Section 4.

3. The Median Algorithm
We use the following notation to represent the 
adjacencies in a genome [1]. If two vertices a and b 
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from different markers are adjacent in a genome, 
we represent this by an edge {a,b} = {b,a}; for a 
vertex c at the end of a chromosome and hence 
adjacent to no other vertex, we construct the single-
ton {c}. Then any rearrangement operation can be 
represented by an operation on one or two terms 
in the representation, such as {a,b},{c,d} → 
{b,d},{a,c} or {a,b} → {b},{a} or {a,b}, {c} →
{b},{a,c}. Algorithm Median successively trans-
forms all three genomes into their median.

This algorithm is inspired by the MGR algorithm 
[2] in its strategy of seeking operations which move 
each genome toward the other two as much as pos-
sible at each step. The details of which operations 
are prioritized are slightly different, as are the fi nal 
steps towards the median. The use of the DCJ 
paradigm makes the coding straightforward, as can 
be deduced from the accompanying pseudocode. A 
consequence of the DCJ approach is that the median 
can contain circular chromosomes, even if the three 
neighbouring genomes have only linear chromo-
somes, whereas previous methods exclude the 
presence of circles in the median.

4. Escape from Local Minima
Once the small phylogeny algorithm converges, 
we seek a better minimum as follows. Again we 
iterate over all ancestral nodes until convergence. 
At each node V, we examine the adjacencies defi n-
ing V’s current genome. Those adjacencies and 
singletons that are in all three or in any two of the 
neighbours constitute the invariant part of V.

Consider the set U containing just those adja-
cencies or singletons of V that are in only one of 
the neighbours. Our approach to fi nding a better 
minimum is to pick any two vertices at random in 
U, to perform a DCJ operation on the two adjacen-
cies or singletons containing these two vertices and 
to add the resulting adjacencies or singletons to U, 
replacing the current adjacencies and singletons 
in V. If the resulting genome has better or equal 
median distance than the current minimum, it 
replaces the current genome. This is repeated a 
large number of times, 5000 in our experiments. 
When there is no longer any change in the total 
tree length, the algorithm terminates.

By retaining alternative medians of equal median 
distance at each step, this approach effectively 
searches far from the original solution. MGR [2] 
also includes a (somewhat different) post-processing 
step for escaping from local minima.

5. The Campanulaceae cpDNA 
Dataset
The well-known Campanulaceae chloroplast data-
set consists of 13 cpDNAs with 105 markers each. 
Each genome consists of one circular chromosome. 
The data were fi rst collected by E. Cosner and have 
been studied by Cosner et al. [4] and Moret et al. 
[7]. Using GRAPPA, Moret et al. reconstructed 
216 tree topologies of Campanulaceae with a total 
distance of 67 reversals each. Bourque and Pevzner 
[2] used MGR to reconstruct one of these 216 trees, 
that shown in Figure 1, with a total distance of 65 
inversions.

We ran our program on this data set using the tree 
reconstructed by MGR, without allowing the appear-
ance of additional circular chromosomes (i.e. no 
transpositions or block interchanges), and obtained 
64 DCJ operations. Running the program uncon-
strained, we obtained a total distance of 59 DCJ 
operations. Only four ancestors had an extra circular 
chromosome, but there is no biological evidence in 
the Campanulaceae, or other higher plants, of chlo-
roplast genomes consisting of two or more circles.

Algorithm Median

input three genomes with same gene content.
while  it is possible to do an operation {a,b},{c,d} → 

{b,d},{a,c} that creates two adjacencies 
{b,d} and {a,c} in one genome that are 
already shared by the other two, execute such 
an operation.

endwhile
while  i t  i s  possible  to  do an operat ion 

{a,x},{b,y} → {a,b},{x,y} that creates an 
adjacency {a,b} in one genome that is 
already shared by the other two, let S be the 
set of such operations. (N.B., either x or y or 
both may be null elements so that, e.g. {a,x} 
is just the singleton {a}.) For each operation 
in S, associate a score defi ned to be the incre-
ment in |S | were that operation to be applied. 
Choose an operation in S to apply with 
maximum positive score.
if |S |  = 0 and it is possible to do operations 

{a,x} ,{b,y}  →  {a,b} ,{x ,y}  and 
{a,w},{b,z} → {a,b},{w,z} in two 
genomes that not only create an adjacency 
{a,b} in each that already exists in the 
third, but also create an element of S, 
execute such a pair of operations. (N.B., 
not all of x,y,w and z can be null.)
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else if  |S | = 0 and it is possible to do 
operations {a,x},{b,y} → {a,b},{x,y} 
and {a,w},{b,z} → {a,b},{w,z} in two 
genomes that create an adjacency 
{a,b} in each that already exists in the 
third, execute such a pair of operations 
that minimize the genomic distance 
between the two affected genomes. 
(N.B., not all of x,y,w and z can be 
null.)

endif
endwhile
for all  adjacencies {a,b} in any genome where 

{a} and {b} are singletons in both other 
genomes, carry out the operation {a,b} →
{a},{b}.

endfor
(At this point all three genomes have been trans-
formed to the same structure, the median.)
for all  pairs of adjacencies and/or singletons in 

the median we carry out all possible DCJ 
operations on the pair and see if it reduces the 
sum of the distances between the median and 

the three original genomes; if so, we adjust 
the median accordingly. Whenever such an 
adjustment is found, we repeat this search.

endfor
output median genome.

6. Data Set on Mammals
The mammalian data set, drawn from [8], consists 
of the genomes of human, rat, mouse, cat, dog, pig 
and cow. Each genome consists of 307 HSB 
(homologous synteny blocks). In [8], the total 
distance of the tree in Figure 2 is 487 reversals, 
obtained using MGR.

Running DCJ on this data set using the same 
tree topology, without allowing the ancestors to 
have any circular chromosome also resulted in a 
total distance of 487 DCJ operations. The fi rst local 
minimum was 495, but the Escape routine brought 
it down to 487. When we allowed ancestors to have 
circular chromosomes in addition to linear ones, we 
obtained a total distance of 486 DCJ operations. The 
number of circular chromosomes that appeared in 

Figure 1. Phylogeny for Campanulaceae data set. Rooting and edge lengths arbitrary.
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each ancestor ranged between 1 and 5, but only in 
the immediate ancestors of the seven data species.

7. Implementation
Our experimental software was oriented to achieve 
the maximum accuracy through the Escape routine 
and the median improvement steps, with little regard 
to the size of problems beyond the ones considered 
here. However, there is much room for optimization 
of the code in view of larger data sets.

8. Evidence for Excision-
Circularization-Linearization-
Reincorporation
The DCJ approach can reconstruct circular chro-
mosomes at speciation points although there is no 
current biological evidence for the durability over 
evolutionary time of circular chromosomes in the 
nuclear genomes of higher eukaryotes. While cir-
cularization is well-known and understood in the 
functioning of the immune system, in somatic cell 
tumors, classical “double minutes”, and various 
very small DNA molecules like episomes, and 
while ring chromosomes are a relatively common 
genetic abnormality, the existence of circular chro-
mosomes as part of the normal genomic comple-
ment of a species, including in homozygotes and 
participating in normal meiosis, is unattested.

We have noted in our real examples, however, 
that when the DCJ operations are constrained, the 
algorithm produced solutions that are exactly as 
good as MGR solutions. This validates the 

suggestion in [1] that the notation and algorithm 
proposed in that article can serve as basis for 
exploring the effects of constraints on genome 
rearrangement problems.

The question remains, what is the evolutionary 
signifi cance of these chromosomal circles, espe-
cially circular intermediates? Circular DNA struc-
tures abound in all sorts of organisms, even 
eukaryotes. Circular chromosomes are well-known 
in clinical studies [5] and the process of excision, 
circularization, linearization and reincorporation 
is exactly what happens in the confi guration of the 
immune response in higher animals. And circular 
intermediates within germ line cells could play a 
role in rearrangement without becoming fi xed in 
a population. But because the evolutionary conse-
quences of block interchange could have come 
about in other ways, e.g. various combinations of 
nested inversions, there has been no reason to look 
for evidence of this process or even to notice it. 
The question of the existence or importance of 
block interchange remains open.

How would we detect a transposition or a block 
interchange in closely related genomes? Figure 3 
shows how the fl anking markers of the transposed 
segment in one genome are adjacent in the other 
genome and vice versa. In genomes that are farther 
apart, we could expect some aspects of this pattern 
to be disrupted by subsequent rearrangements.

Still, a few of these may survive, or be clearly 
visible despite subsequent rearrangements. For 
example, one of the circular chromosomes at the 
ancestor of pig and cow in Figure 2 is made up of 
markers 127 and 128 in the numbering system of 
[8]. The segments at the beginning of chromosome 
1 of pig, with the fl anking segments outlined on 
either side of the boldface segments from the 
circular chromosome, are −137, −136, −135,−134, 
−133,−132,− 131,−130 ,−129, 125, 127,128, −126,  
271,272,..., while chromosome 9 of cow is 
125,126 ,129, 130, −128,−127, 131, 132,133,134, 
135,136,137. This fi ts the pattern for transposition 
in Figure 3, aside from the subsequent inversion 
of segment 126.

Segments 205 and 206 can form another circle 
in this ancestor; chromosome 5 of cow and pig are: 
211,−208,− 207,−210 ,−209,212,293, 294, −206, 
−205, 295, 296 and −296,− 295,−294 ,−293,208, 
209, 210, −206,−205, 207, −212,−211, respectively, 
which fi ts the diagnostic pattern exactly.

These and other examples can, of course, be 
interpreted in other ways. But their existence is 

Figure 2. Phylogeny for mammalian data set. Rooting and edge 
lengths arbitrary.
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rather improbable without postulating transposition. 
This suggests that a systematic search for such 
patterns is warranted within a statistical model 
allowing a certain degree of post-transposition 
rearrangement.

9. Discussion
We have explored the small phylogeny problem 
under the DCJ paradigm and found that not only 
can it emulate MGR, and even do better in some 
circumstances, but by allowing circular constructs 
it effectively serves as a lower bound for all pro-
cedures with a constrained set of operations.

We raise the problem of the biological signifi -
cance of transpositions and block interchanges and 
suggest that current evidence warrants a systematic 
study of the (existence and) prevalence of this 
operation.

Finally, we point out that the study of genome 
rearrangement is highly sensitive to the quality of 
the data and the degree of resolution of the proce-
dures for demarcating conserved syntenic regions. 
Without a high degree of completion and 
correctness of genome assemblies, translocations 
between chromosomes may be confused with 
transpositions. And with increasing analytical 
resolution, not only do the number of conserved 
blocks increase, but the relative proportions of 
different kinds of rearrangements may shift unpre-
dictably [6].
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