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Introduction
Glioblastoma multiforme (GBM) is the most malignant of all 
brain tumors. Apart from heterogeneity and highly invasive 
behavior, GBM cells tend to infiltrate the surrounding tissue 
by solely leaving the main tumor mass and traveling long dis-
tances inside the brain.1 This diffusive behavior of GBM cells 
is one of the main causes of tumor relapse after resection. Since 
infiltrating cells are generally not visible by an magnetic reso-
nance imaging (MRI) and an extensive resection may damage 
surrounding tissue, small populations of such cells are almost 
always left at the resection margin of GBMs and are widely 
believed to drive tumor relapse. Therefore, in order to provide 
quantitative insight into the nonimageable phenomenon of 
tumor cell invasion, a number of mathematical models have 
been developed.2–8 Most of the published mathematical mod-
els ignore the anisotropic character of diffusion of glioma cells 
since truly exploitable tomographic imaging data to this end 
are rare. In order to enrich the anisotropy-enhanced glioma 

model weaponry so as to increase the potential of exploiting 
available tomographic imaging data, we propose a Brownian 
motion-based mathematical analysis that could serve as the 
basis for a model estimating the infiltration of glioblastoma 
cells into the surrounding normal brain tissue. The analysis 
is based on clinical observations and exploits diffusion tensor 
imaging (DTI) data. Numerical simulations and suggestions 
for further elaboration are provided. A realistic model based 
on the analysis presented could be useful for diagnosis as well 
as resection and radiotherapy planning.

Mathematical Modeling of Diffusion
The reaction–diffusion equation has been widely used for 
modeling the diffusion of tumor cells. In Refs. 2 and 5, the 
authors assume that tumor cells move from regions of higher 
to lower densities and exploit the reaction–diffusion equation 
using an additional term corresponding to the net prolifera-
tion of tumor cells:
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where c(x, t) is the concentration of glioma cells at time t and 
location x, and ρ reflects the net proliferation of glioma cells. 
D is the diffusion coefficient, assuming different scalar values 
on regions of white (Dw) and gray (Dg) matter, where Dw.Dg. 
In this model, diffusion of tumor cells is mathematically 
described by the equation
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where D = Dw is the diffusion coefficient in white matter regions, 
D = Dg is the diffusion coefficient in gray matter regions of the 
brain, and xi, i = 1, 2, 3, denote the three Cartesian coordinates. 
This model has been widely used throughout the literature. For 
a review, see Ref. 9. Numerical treatments of Equation (1) can be 
found in Ref. 7. In Refs. 10 and 11, the authors have expanded 
this model, introducing in Equation (1) the diffusion coefficient D 
in the tensorial form, thereby including anisotropy in their models. 
Measurements of D in the tensorial form were acquired through 
DTI techniques, which are described in the following section.

The starting point for developing our model is the obser-
vation that Equation (1a) is the Fokker–Planck equation cor-
responding to the stochastic differential equation

	 dx D dBt t= ⋅2 	 (1b)

where Bt denotes the standard Brownian motion in R3.12 Given 
the initial position xo of a glioma cell, the distribution of the 
random variable xt (ie, the solution of Equation (1b) at time t) 
provides the probability distribution over all possible locations 
of this cell at time t. Given the initial position of a glioma cell 
in terms of a probability distribution p(x, 0), the probability dis-
tribution p(x, t) can be found by the following two equivalent 
ways: (i) by solving Equation (1a) as a partial differential equa-
tion in order to find the evolution of this distribution through 
time, or equivalently, (ii) by solving the stochastic differential 
Equation (1b) with initial distribution p(x, 0), in order to find 
the probability distribution of the random variable xt.

In case we desire to study the movement of many glioma 
cells constituting a tumor, this notion of distribution is inter-
preted as follows: integration of p(x, t) over an area A of R3 
yields the fraction of the total tumor cell population that is 
located in A.

In the following sections of this article, it will be shown 
that this point of view provides an intuitive and natural way of 
modeling anisotropy in the movement of tumor cells.

Diffusion Tensor Imaging
DTI is an MRI technique measuring the diffusion proper-
ties of water molecules along specific directions. This is done 
by defining an ellipsoid in every voxel of a three-dimensional 

space which mathematically corresponds to a 3 × 3 positive-
definite symmetric matrix:
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This matrix can be decomposed into the following form:
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where λ1, λ2, λ3 are the eigenvalues of D (positive, since D is 
positive definite) and u1, u2, u3 are the corresponding orthonor-
mal eigenvectors. The eigenvalues and eigenvectors of D define 
an ellipsoid with principal axes lying on the directions of u1, u2, 
u3 and having lengths 2 2 21 2 3λ λ λ, , , respectively (Fig. 1).

This ellipsoid, called the diffusion ellipsoid, describes the 
anisotropic diffusion of dyed water molecules in the specific voxel 
it refers to. If at the beginning of the observation period, a drop-
let of water molecules is placed at the center of the ellipsoid, after 
some time, the front of the diffusing water molecules will form 
an ellipsoid like the one in Figure 1. This reflects the fact that at 
a certain location, water molecules do not move toward all direc-
tions at equal rates. Diffusion is faster in the larger axis (ie, along 
the eigenvector corresponding to the larger eigenvalue). For 
each eigenvector of D, the larger the corresponding eigenvalue, 
the larger the diffusion along its direction. DTI measurements 
provide this ellipsoid (actually, the principal axes directions and 
lengths) for each voxel. For a visual representation, see http://
commons.wikimedia.org/wiki/File:DTI-axial-ellipsoids.jpg.

Diffusion tensor MRI has been used extensively for trac-
tography in vivo. It is widely assumed that water molecules 
tend to move more easily along white matter tracts; therefore, 
the fiber bundle of local white matter tracts is assumed to be 
aligned with the largest axis of the diffusion ellipsoid.13 Fur-
thermore, measuring the surface of the front of the diffusing 
water molecules (ie, the surface area of the diffusion ellipsoid) 
provides a quantity known as apparent diffusion coefficient 
(ADC), which has been reported to inversely correlate with 

u1
u3

u2

Figure 1. The triaxial diffusion ellipsoid. See main text for details.

http://www.la-press.com
http://www.la-press.com/cancer-informatics-journal-j10
http://commons.wikimedia.org/wiki/File:DTI-axial-ellipsoids.jpg
http://commons.wikimedia.org/wiki/File:DTI-axial-ellipsoids.jpg


Modeling infiltration of glioma cells

35Cancer Informatics 2015:14(S4)

local cell density.14,15 Taking into account that brain tumor cells 
are generally assumed to diffuse toward regions of lower cellular 
density2,5 and invade the surrounding tissue by moving along 
white matter tracts,1 the diffusion tensor acquired by DTI has 
been used to describe the diffusion of tumor cells as well.10,11

Derivation of the Model
Our model will use the diffusion tensor measurements pro-
vided by DTI to describe the stochastic movement of tumor 
cells within the brain tissue. Let us assume that we are given a 
DTI atlas, consisting of the diffusion tensor in each voxel like 
in Ref. 10. Since the voxel size is of the order 0.5–1 mm3, we 
will assume that the diffusion tensor is piecewise constant: the 
diffusion tensor is constant within a voxel and is defined by the 
measured diffusion ellipsoid of the particular voxel. Thus, sup-
posing that the observation period of the tensor measurement 
(see before) is ∆t, the movement of a particular water molecule 
within a voxel can be described by the equation
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where p(x, xo, ∆t) is the probability of a molecule starting at 
xo to be at x after time ∆t. U is the matrix whose columns are 
the orthonormal vectors u1, u2, u3 of the diffusion tensor of the 
voxel, and L is a diagonal matrix with the respective eigenval-
ues λ1, λ2, λ3 as elements of the main diagonal. Thus, given xo, 
the probability density function of x is a multivariate Gaussian 
with mean xo and covariance matrix ULUT. The movement 
of tumor cells in the same interval ∆t can be described by  
the equation
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Using Equations (4) and (5), Equation (3) can be written 
equivalently as
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(6)

The parameter α is positive and rescales the eigenvalues 
of the tensor, thereby rescaling conformally the axes of the 
diffusion ellipsoid. This reflects the fact that tumor cells may 
tend to move along the axes of the ellipsoid, but do so with 
a different velocity than water molecules. Since tumor cells 
move slower than water molecules, we typically expect α ,1. 
Equations (3) and (6) again are Gaussian probability densities 
for the random variable x, ie, the position of a tumor cell after 
time ∆t given that the initial position of the cell is xo. Using a 
standard linear transformation, the random variable x can be 
equivalently written in the form
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where Z is a normally distributed random vector with mean 
xo, and whose covariance matrix is the identity matrix in R3. 
Equivalently, we can write for the random variable x – xo,
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where Z′ is a normally distributed random vector with mean 
(0, 0, 0) and covariance matrix the identity matrix in R3. 
This leads us to model the movement in continuous time by  
the equation
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where b is a three-dimensional random vector,
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ie, the distribution of b is normal with zero mean and covari-
ance matrix the identity matrix times ∆τ. This is equivalent to 
the stochastic differential equation

	 dx U x L x dBt ta= ⋅ ( ) 1
2 ( ) 	 (7)

where Bt denotes standard Brownian motion in R3. The matrix 
U(x) depends on x, and its columns are the orthonormal 
eigenvectors u1(x), u2(x), u3(x) of the diffusion tensor at x. The 
matrix L1/2(x) is diagonal, and its main diagonal entries are 
the square roots of the eigenvalues λ1(x), λ2(x), λ3(x) of the 
diffusion tensor at x. The parameter a is to be estimated from 
data. Equation (7) is the model we propose for describing the 
movement of tumor cells in the brain.

By assuming a twice differentiable diffusion tensor and 
denoting the probability density function of xt by p(x, t), the 
corresponding Fokker–Planck equation describing the evolu-
tion of p(x, t) through time is
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where βi,j(x) are elements of the matrix

	 β x U x M x U x M x T
( ) = ( ) ( ) ( ) ( )( )1

2
1

2

where M is the diagonal matrix with main diagonal entries 
αλ αλ αλ1 2 3x x x( ) ⋅ ( ) ⋅ ( ), , .12 Denoting by p(x,0) the prob-

ability distribution of the position of a cell at time 0, we can 
estimate the probability that the particular cell will lie at a 
ball of center x at time t, by integrating the function p(x, t) on 
that ball. Sampling from the distribution p(x, t) can give us an 
estimate on how the cells have spread at the end of the time 
interval [0, t]. Assuming that the diffusion tensor is twice dif-
ferentiable, solution of Equation  (8) could be approximated 
by numerical methods like finite differences. But DTI pro-
vides piecewise constant values for the diffusion tensor, so one 
should first approximate DTI measurements by a twice dif-
ferentiable function.

We note that in the case of isotropic diffusion, U(x) is a 
constant and equals the identity matrix. The eigenvalues λ1(x), 
λ2(x), λ3(x) are also constants and λ1(x) = λ2(x) = λ3(x) = λ. In 
this case, equation reduces to
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which is the form of the diffusion term in Equation (1a) for 
isotropic diffusion. A comparison of these equations leads to

	 2D = aλ.

There are well-known estimates of the diffusion coeffi-
cients throughout the literature.2,5,7 The last equation provides 
means for estimating the parameter a. As seen from this equa-
tion, an increased value of the parameter a means a higher 
diffusion coefficient. Biologically, this corresponds to higher 
cell motility and a more extended infiltration of glioma cells 
throughout the brain.

Equation (7) can be written in the form
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where dB dB dBt t t
1 2 3, ,  are the one-dimensional components of 

the three-dimensional vector dBt.
Comparing Equations (1b) and (7a) and taking into 

account equation 2D = aλ reveals the connection of our 
approach with previous ones. Equation (1b) implies that the 
diffusion ellipsoid is a sphere and that given its initial posi-
tion, a cell can move along any unit direction with the same 
probability. By taking into account the axes of the diffusion 
ellipsoid as provided by DTI and by varying the quantities 

a a aλ λ λ1 2 3, , , our model is able to quantify the preferen-
tial movement of tumor cells along specific unit directions.

Previous approaches involve numeric integration of Equa-
tion (1a). We will not try to solve Equation (8) numerically. 
Rather, we are going to assume an initial distribution of tumor 
cells and numerically simulate sample paths from Equation (7)  
on the interval [0, t]. These paths are seen as possible cell tra-
jectories, along which tumor cells infiltrate the surrounding 
brain tissue. We are going to keep track of the random vari-
able xt, ie, the position of the simulated cell at time t resulting 
after each simulation. The value of xt is an approximate sample 
from the distribution p(x, t).

Through our simulations, we will assume that the matri-
ces U(x) and L(x) are piecewise constants. This assumption is 
imposed by the minimum voxel size of the DTI technique. 
Interpolation methods could be used to obtain a smooth ver-
sion of DTI measurements. Owing to absence of an actual DTI 
atlas of the human brain, we will not do this in this work.

Numerical Simulations
To produce sample paths of Equation (7), we will use the 
Euler–Maruyama16 numerical scheme:

	 x x t aU x L x Zn n n n+ = + ∆ ( ) ( )1
1 2/ 	 (9)

where Z is an R3-valued, normally distributed random variable 
Z ∼ N(0, I3), and ∆t is the discretization step. In each iteration, 
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the matrices U(xn), L(xn) are defined by the eigenvalues and 
eigenvectors of the diffusion tensor of the voxel in which xn lies.

Scheme (9) has order of strong convergence 1/2. This 
means that if xT  is the solution of Equation (7) at time T as 
calculated from Equation (9) and xT is the actual solution of 
Equation (7) at time T, then

	 E x x C tT T|| ||− ≤ ( )/∆ 1 2

for some positive constant C.16

Rewriting Equation (9) in view of Equation (7a) yields
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where Z1, Z2, Z3 ∼ N(0, 1) that is, Z1, Z2, Z3 are one-dimensional, 
independent, and normally distributed random variables and 
∆t is the discretization step.

We will use Equation (9a) for our simulations. It is 
worth noting that, in view of the previously derived equation, 
2D = aλ, since the diffusion coefficient unit is (surface units)/
(time units), eg, mm2/h, the quantities ∆t a xi nλ ( ) , i = 1, 2, 
3 in Equation (9a) are length units (eg, mm).

Owing to absence of an actual DTI atlas of the brain, 
simulations were performed using various synthetic diffu
sion tensors.

Estimates of D were taken from Refs. 2 and 5. A 10-fold 
variation of D(Dmax = 10Dmin) was used; we have estimated 
the quantities a xi nλ ( ), i = 1, 2, 3, using the equation 2D 
= aλ (Table  1). As for the orthonormal eigenvectors u1(x), 
u2(x), u3(x) of the local diffusion tensor, we used the fol
lowing examples:
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In each simulation, we have used a population of 
40,000  cells, initially distributed according to a standard 

(non-skewed) Gaussian distribution with small variance (#1). 
We have performed simulations for 400, 800, and 1500 hours 
using a simulation step equal to 1/60 hours. Since each path 
can be simulated independently, we have parallelized the 
algorithm on a quad-core computer. The algorithm took about 
170  seconds to perform a 1500-hour simulation. Usage of 
more processors is expected to improve this time.

Simulation results are shown in Figure 2.
Figure 3A and 3B shows isotropic diffusion. The simu-

lation time is 800  hours. For both figures, the diffusion 
tensor is constant and its eigenvectors consist of triad (I). For 
Figure 3A, ∆t a x mmiλ ( ) .= 0 1 , i = 1, 2, 3. For Figure 3B, 

∆t a x mmiλ ( ) .= 0 32 , i = 1, 2, 3. As can be seen, diffusion 
of cancer cells takes place symmetrically along all axes. In 
Figure 3B, the larger diffusion coefficient results in cells infil-
trating a larger area.

Figure  4A and 4B shows anisotropic diffusion. For 
both simulations, the following synthetic diffusion tensor 
has been used: For x1 $0, the diffusion tensor is defined by 
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0 1 0
2

2
0

2
2

( ) , , , ( ) ( , , ), ( ) , ,=






= = −





 and 

∆ ∆ ∆t a x mm t a x mm t a xλ λ λ1 2 30 15 0 15( ) . , ( ) . , ( )= = =
0.32 mm. For x1 ,0, the diffusion tensor is defined  by 
u1(x) = (1,0,0), u2(x) = (0,1,0), u3(x) = (0,0,1) and ∆t a xλ1( ) = 
0 25 0 12 3. , ( ) . , ( )mm t a x mm t a x∆ ∆λ λ= = 0.1 mm. The 
simulation time is 800  hours and 1500  hours, respectively. 
Inspection of Figure 4A and 4B reveals the tendency of the 

cells to move parallel to −






2
2

0
2

2
, ,  when they lie on the 

Table 1. Diffusion coefficient and ∆ αt xiλ ( ) , i = 1, 2, 3, min/max 
values.

min max (10×)

D
mm

h

2





0.0054 0.054

∆ αt xiλ ( ) , i = 1, 2, 3 (mm) 0.1 0.32

End

End

Start

Start

Figure 2. Probable (sample) paths of a cell, with starting and ending 
points. A cell initially located at the start position will perform random, 
Brownian-like movements described by Equation (7). Sample paths 
have been obtained by numerical integration of Equation (7). Performing 
several such simulations and keeping track of the respective end points, 
one obtains an image of the distribution of cells throughout the brain, as 
those depicted in Figures 3–5.
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x1 $0 side and parallel to (1,0,0) when they lie on the x1 ,0 
side. Figure 4(C) depicts the projection of Figure 4(B) on the 
x1x2 plane. There is a slight wider spread along the x2 axis on 
the x1 $0 side compared to the one on the x1 ,0 side. This is 
due to the higher (0.15 to 0.1) value of ∆t a xλ2( ) on the 
x1 $0 side.

Figure  5(A) and (B) also show anisotropic diffusion. 
The simulation times are 800 hours and 1500 hours, respec-
tively. The following synthetic diffusion tensor has been 
used: For x1 $0, x3 $0, the diffusion tensor is defined by 

 u x1
2

2
0

2
2

( ) , ,=





,   u2(x) = (0,1,0), u x3

2
2

0
2

2
( ) , ,= −






    and

∆ ∆ ∆t a x mm t a x mm t a xλ λ λ1 2 30 32 0 15( ) . , ( ) . , ( )= = =

0.15 mm. For x1 $0, x3 ,0, the diffusion tensor is defined by 

u x1
2

2
0

2
2

( ) , ,= −





 ,            u2(x) = (0,1,0), u x3

2
2

0
2

2
( ) , ,=






                and 

∆ ∆ ∆t a x mm t a x mm t a xλ λ λ1 2 30 32 0 15( ) . , ( ) . , ( )= = =
0.15 mm. For x1  0, the diffusion tensor is defined by u1(x) 
= (1,0,0), u2(x) = (0,1,0), u3(x) = (0,0,1) and the quantities 

∆ ∆ ∆t a x mm t a x mm t a xλ λ λ1 2 30 3 0 2( ) . , ( ) . , ( )= = =

0.2 mm. In view of Equation (9a), there is a clear tendency of 
the cells to move parallel to eigenvectors with greater coef-
ficients. In Figure 5(C), we show the projection on the x1x2 
plane. Cells on the x1 , 0 side appear with a smaller den-
sity  and a wider spread along the x1 axis than those on the  
x1 $ 0 side. Again, this is partially explained by the higher 
value of ∆t a xλ2( )  (0.2 to 0.15 mm) on the x1 ,0 side. Cells 
on the x1 ,0 side tend to move more easily parallel to the x2 
axis. Additionally, by comparing the projections on the x1 axis 
of the vectors ∆t a x u xλ1 1( ) ( )⋅  of both x1 $0, x3 $ 0 and  
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Figure 3. Visualization of isotropic diffusion. See text for details.
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Figure 4. Visualization of anisotropic diffusion. See text for details.
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x1 $0, x3 ,0 regions with the value of ∆t a xλ1( ) on the x1 
,0 region, we see that in the x1 ,0 region, cells tend to move 
more easily along the x1 axis as well.

Discussion
We have modeled the movement of glioma cells in the brain 
using a stochastic differential equation. Our method relies on 
the assumption that glioma cells perform a Brownian-like 
motion while infiltrating the surrounding brain tissue. Our start-
ing observation has been that many popular models describing 
the same phenomenon do actually imply the same hypothesis; 

the well known reaction–diffusion Equation (1a) constitutes 
the Fokker–Planck equation for a simple stochastic differential 
equation with zero drift and a constant diffusion term. How-
ever, it is perceivable that Brownian motion-based models may 
not be adequate for describing cell movement. Cell movement 
is affected by several mechanisms, including directed cell motil-
ity along gradients of chemoattractant molecules (eg, growth 
factors, nutrients, cytokines, chemokines) or along gradients of 
extracellular matrix molecules.17 These mechanisms are known 
as chemotaxis and haptotaxis, respectively.18,19 To the best of 
the authors’ knowledge, in vivo measurements concerning such 
phenomena are not yet feasible. Our approach provides a basis 
for modeling the random motion of tumor cells, which can be 
extended and readjusted if such measurements become avail-
able. For example, knowledge that tumor cell motility is affected 
by certain chemotactic or haptotactic gradients can be readily 
modeled by introducing appropriate nonzero drift terms to 
Equation (7), each one corresponding to a specific gradient.

We have not included proliferation of cells in the analysis as 
yet. The latter can be introduced by allowing the sample paths to 
branch during the time of the simulation in the following way: 
if a cell located at position yo divides, sample paths can be pro-
duced from Equation (7) with initial position yo, thus producing 
probable paths for the cells resulting after mitosis. Undoubtedly, 
this approach implies larger computational burden. However, 
as previously stated, our model and its simulation algorithm are 
suitable for parallelization. We leave this for future work.

Since the model is hypothesis oriented, we provide some 
discussion on how its performance can be assessed, provided 
that suitable MRI and DTI are available. As described in the 
previous section, given an initial distribution over possible loca-
tions of tumor cells, the model actually produces approximate 
samples from the distribution p(x, t) of possible locations x of 
tumor cells at time t. We denote these samples by xi, i = 1, …, N. 
The actual distribution of tumor cells q(x, t) can be deduced by a 
three-dimensional MRI. We let each voxel correspond to a cube 
and consider the σ-algebra ∑ produced by these cubes in R3. 
Cellular densities of each voxel are normalized to sum to 1.

We use the samples xi, i= 1,…, N to build an approxima-
tion of the distribution p(x, t) as follows:

	
p ( , ) ( )x t

N
xA i

i

N
=

=
∑1

1
1

	 (10)

where 1A is the indicator function of the set A.
The total variation distance between distributions p( , )x t  

and q(x, t) is

	 || || | |q x t x t q A t A tTV A( , ) ( , ) max ( , ) ( , )− = −∈p p 
Σ 	 (11)

Small variation distance between measured and simulated 
distributions implies good model performance. Minimization 
of this distance may also be used for parameter estimation.
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Figure 5. Visualization of anisotropic diffusion for a different diffusion 
tensor. See text for details.
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Conclusions – Future Work
We have proposed a novel mathematical treatment for simu-
lating the invasion of glioma tumor cells into the brain. The 
method consists of simulating probable paths that the tumor 
cells may follow, using a stochastic differential equation. An 
inspection of the results obtained so far shows that our approach 
satisfies basic qualitative characteristics of anisotropic glioma 
cell diffusion. Therefore, it will be further elaborated – includ-
ing, ie, the explicit modeling of cell proliferation – in order to 
finally serve as a tomographic data adaptable diffusion model 
of glioma invasion and thus eventually improve the simulation 
of the corresponding biological phenomena.

The proposed model provides a distribution of the glioma 
cell population throughout the brain. The latter can lead to an 
estimate of local cell density in any position within the brain. 
By discretizing the anatomic region of interest through the 
utilization of a three-dimensional cubic mesh, we can have an 
estimate of glioma cell density in each cube.

The glioma cells residing within each elementary cube 
of the mesh can be clustered into subcategories depend-
ing on their cell cycle phase status and metabolic activity. 
At this point, the discrete-entity, discrete-event approach 
described in Ref. 17 can be recruited in order to simulate 
the response of glioma to treatment, such as radiotherapy  
and/or chemotherapy.
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