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Introduction
DNA methylation is an epigenetic modification in a cell. This 
modification adds a methyl group (CH3) to the 5′ position of 
cytosine in a DNA sequence and is inheritable through cell 
division.1,2 For mammalian cells, it occurs only at CpG sites 
(cytosines paired with guanines). DNA methylation plays 
an essential role for both normal and cancerous cell develop-
ment3–6 and is closely related to significant processes, includ-
ing X-chromosome inactivation, genomic imprinting, and 
tumor growth.7–10

In a genome, there are different types of methylation 
patterns, including hypermethylation, hypomethylation, and 
hemimethylation. Hypermethylation occurs when samples 
in one group (eg, cancer patients) have more methylation 
than the samples in another group (eg, normal individuals). 
Hypomethylation occurs when samples in one group have 
less methylation than the samples in another group. Hemim-
ethylation means that at a CpG site, only one strand of the 
DNA is methylated (denoted M in Fig. 1), and the other 
strand is unmethylated (denoted U in Fig. 1). Recent research 
studies11–13 show that, on a number of genes, hemimethyla-
tion may occur as a same-strand cluster (Fig. 1A), a polarity  

(or reverse) hemimethylation cluster (Fig. 1B) with only two 
CpG sites, or a different-strand cluster with more than two 
CpG sites (Fig. 1C). The cluster pattern means that two or 
more consecutive CpG sites are methylated only on one DNA 
strand, and not on the other strand, as shown in Figure 1A. 
The polarity (or reverse) hemimethylation clusters imply that, 
at the two consecutive CpG sites, the methylation patterns on 
the positive and negative strands are “MU and UM,” respec-
tively, as shown in Figure 1B. “MU and UM” means that, 
at two adjacent CpG sites, the first site is hemimethylated as 
MU on the positive and negative strands, while the next adja-
cent site is hemimethylated as UM on two strands, which has 
a reversed pattern. The hemimethylation patterns shown in  
Figure 1 are like the footprints of DNA demethylation (ie, 
methyl groups are removed) in cancer.12 This “footprint” role 
exists because hemimethylation is a transitional state between 
being methylated and having no methylation at specific CpG 
sites. Therefore, the identification of hemimethylation is 
important for understanding both methylation events and the 
establishment of different methylation patterns.

A major experimental limitation in hemimethylation 
studies has been the difficulty in obtaining methylation signals 
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from the two complementary strands of DNA molecules for 
all CpG sites in an entire genome. Previous hemimethylation 
studies can only obtain the hemimethylation data for a few 
genes using the traditional Sanger sequencing and hairpin 
sequencing methods.11–13 Even though microarray techno-
logies can obtain methylation levels genome-wide, they cannot 
produce methylation signals on two DNA strands separately. 
However, the next-generation sequencing (NGS) techno-
logy,14,15 combined with the bisulfite conversion technique (ie,  
C is converted to U and then becomes T), makes it possible to 
obtain methylation signals at the CpG site level on both DNA 
strands in an entire genome.16–19 During the last several years, 
a number of pioneering research groups have successfully 
used the bisulfite-converted methylation sequencing method 
on either Arabidopsis thaliana or human samples.16,18–25 Using 
bisulfite-converted methylation sequencing data, we can 
detect both the gain and loss of methylation by investigating 
hemimethylation patterns on two complementary strands. 
Nevertheless, the NGS technology produces a large amount 
of data.26 The quality of bisulfite sequencing data may be 
poor because of incomplete bisulfite conversion, genome 
variation, and sequencing errors.27 All of these features make 
processing and analyzing data challenging when identify-
ing hemimethylation patterns. To address this challenge, we 
have developed the first-ever hemimethylation identification 
pipeline, HMPL. This pipeline can identify hemimethylated 
CpG sites and characterize different patterns in an entire 
genome. HMPL locates hemimethylated sites in each of the 

two different samples and then compares them. In the next 
section, we will explain the processes involved in HMPL in 
more detail.

Methods
The workflow of HMPL. The workflow of our pipeline 

HMPL (see, Fig. 2) consists of two parts. Part I (prepro-
cessing) utilizes available software packages in three steps: 
sequencing data quality assessment, trimming, and align-
ment (ie, Steps 1–3 of the workflow). Part II (parsing) is the 
new feature developed by our group. This part includes data 
parsing and summary reports (ie, Steps 4 and 5 of the work-
flow). A more detailed description of these steps is introduced 
below. HMPL code and resource files can be downloaded 
from the following web link: http://hal.case.edu/∼sun/
HMPL/HMPL.zip.

Step 1: assess sequencing qualities using FastQC.28

FastQC is a software package for assessing sequencing 
qualities by generating basic and informative diagnostic plots 
for sequencing data. This package provides a modular set of 
analyses for users to obtain a quick impression as to whether 
or not there are any obvious and serious problems before they 
start any downstream data analysis. FastQC produces basic 
statistics plots and summary reports for (1) per base sequence 
quality, (2) sequence quality scores, (3) summary of per  
base sequence content, (4) per sequence GC content, (5) per 
base N content, (6) sequence length distribution, (7) dupli-
cate sequences, (8) overrepresented sequences, (9) adapter  

figure 1. examples of hemimethylation patterns. m and CmG represent a methylated site. U and CG represent an unmethylated site. a is an example of 
hemimethylation that occurs on the same strand. B is an example of polarity or reverse hemimethylation pattern with only two CpG sites. C is an example 
of hemimethylation on different strands with more than two CpG sites.
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content, (10) Kmer (or K-base) content, and (11) per tile 
sequence quality.

Step 2: trim sequencing data.
Quite often, sequencing quality is very low at the 3′ 

end in sequencing reads, and raw reads may include adapter 
sequences. Therefore, HMPL has included the quality trim-
ming and adapter-trimming step. In particular, dynamic 
trimming (the trim function provided in the software package 
BRAT29) and fixed-number-base trimming options are pro-
vided for quality trimming. The software package cutadapt30 
is included for adapter trimming.

Step 3: align reads using BRAT-bw31 and obtain methy-
lation ratios at all cytosine sites.

After trimming, alignment is done using BRAT-bw.31 
After alignment, the methylation level (or ratio) at each cyto-
sine (or C) site is obtained using the “acgt-count” function of 
the BRAT-bw package. The “acgt-count” function provides 
two options for generating output files: (1) the counts of “A,” 
“C,” “G,” and “T” at each cytosine site and (2) the methyla-
tion level for each cytosine site. In the HMPL package, we 
have chosen the second option of the “acgt-count” function. 
At each cytosine site, the methylation level is calculated as 
the ratio of the count of “C” (or the number of sequencing 
reads with methylated cytosine) to the count of “C” and “T” 
(or the total number of reads covering that site). The “acgt-
count” function produces methylation levels for positive and 
negative strands in two separate output files. Each output file 
includes the following columns for each cytosine site (ie, each 
row): chromosome, start position, end position, total num-
ber of sequencing reads, methylation level, and DNA strand  
(“+” or “−”).

Step 4: identify hemimethylation patterns and compare 
these patterns in two samples.

In this step, all individual CpG sites that are hemimethy-
lated are first identified. These sites are then classified into two 
groups: hemimethylated singleton and hemimethylated clus-
ter. A hemimethylated CpG site is defined as a singleton if its 
adjacent CpG sites within d bases (eg, d = 100, a user-specified 
distance) are not hemimethylated. A hemimethylation cluster 
consists of at least two CpG sites that are all hemimethylated, 
and any two adjacent CpG sites in this cluster are within d 
bases. The following is a brief description of how to deter-
mine hemimethylated singletons and clusters. Starting from 
the first CpG site on a chromosome, for each hemimethylated 
CpG site, HMPL checks if the next CpG site is hemimethy-
lated. If it is hemimethylated and is within a d-base region of 
the previous CpG site, these two are grouped together as a 
cluster and we continue to check the next (or third) CpG site; 
otherwise, this hemimethylated site is defined as a singleton. 
Hemimethylation clusters may have the following patterns: 
(1) consecutive CpG sites hemimethylated in the same DNA 
strand (eg, the three CpG sites in Fig. 1A), (2) the polarity or 
reverse hemimethylation cluster with only two CpG sites (as 
shown in Fig. 1B), and (3) consecutive CpG sites methylated 
on different strands and with more than two CpG sites, eg, 
the methylation of three CpG sites are MUU and UMM on 
the positive and negative strands, respectively (as shown in 
Fig. 1C). HMPL can also compare hemimethylated singleton 
sites and clusters of two samples.

Because high-throughput sequencing data may include 
sequencing and alignment errors, HMPL identifies a 
hemimethylated site using the following criteria. First, the 
user may determine a coverage cutoff value B (B . 0, eg, 
B = 5) depending on the sequencing quality and coverage 
level. On each strand, there must be at least B sequencing 
reads to cover a specific CpG site in order for HMPL to 

Step 1: Assess sequencing qualities using FastQC

Step 2: Trim sequencing data
Part I:

Preprocessing

Part II:
Parsing

Step 3: Align reads using BRAT-bw and obtain methylation ratios
            at all cytosine sites

Step 4: Identify hemimethylation patterns and compare these
            patterns in two samples

Step 5: Provide genetic annotation and report findings

figure 2. Workflow of the HMPL.
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check whether or not this site is hemimethylated. Second, 
if the methylation level of a specific CpG site at one strand 
(eg, the positive strand) is larger than the cutoff value H0 (eg, 
H0 = 0.9), it is identified as M (methylated); if the methyla-
tion level is lower than the cutoff value L0 (eg, L0 = 0.1), it 
is identified as U (unmethylated). Using the above criteria, 
HMPL defines a CpG site as MU (ie, methylated on the 
positive strand and unmethylated on the negative strand), 
UM, MM, or UU. In the case of identifying hemimethyla-
tion clusters, HMPL uses the same criteria for two consecu-
tive CpG sites. If a dataset has poor sequencing quality and 
low coverage, the results of using different cutoff values may 
be very different. Therefore, we recommend that users select 
very stringent cutoff values for H0 and L0 to reduce the false 
positive discovery rate because of poor sequencing quality 
and low coverage. For example, the user may use H0 = 0.9 
or 0.95 instead of 0.8 and L0 = 0.1, or 0.05 instead of 0.2. If 
the user’s dataset has good sequencing quality and high cov-
erage, changing the cutoff values may not affect the results 
significantly.

Step 5: provide genetic annotation and report findings.
For each hemimethylated CpG site, HMPL provides the 

following genetic information.
1. Gene: If a hemimethylated CpG site is located on a gene, 

HMPL will report the name of that gene.
2. Pomoter: If a hemimethylated CpG site is within a D-base 

long region (eg, D = 1000) of the promoter of a gene (ie, 
D-base before the transcription starting site of a gene), 
HMPL will report the name of that gene.
Input and output. The HMPL uses raw sequencing reads 

(in FASTQ format) as input in Step 1 and Step 2. In Steps 3, 
4, and 5, the input files are the output files from the previous 
step. More detailed information about the input and output 
files of HMPL can be found in the user manual, which can be 
downloaded from http://hal.case.edu/∼sun/HMPL/HMPL.
user.manual.pdf.

Usage, command options, and running time. HMPL 
is written in Perl32,33 and R34 scripts. It can be run as shown 
below in a LINUX or UNIX environment. The preprocess-
ing step of HMPL (Part I) can be implemented with the fol-
lowing command (the command options of Pre.HMPL.pl are 
explained in Table 1).

perl /,the_diretory_of_ HMPL./code/Pre.HMPL.pl 
-1 ,FASTQ_input_file. -p ,prefix. -r ,reference_name. 
[OPTIONS]

The preprocessing pipeline ties the software and source 
code together with the appropriate dataflow to ensure that the 
correct output is achieved. Users need to have Perl, Python 2.6, 
R, FastQC, and BRAT-bw software installed on their system. 
They can run HMPL by entering commands in a Unix/Linux 
environment. If users have finished the hemimethylation pre-
processing pipeline and have obtained the files of combined 
CpG sites, they may only run the parsing analysis using the 
Part II of HMPL (ie, “Parse.HMPL.pl ”). The usage of Part II 

Table 1. the command options of HmPL Part I (Pre.HMPL.pl).

oPTIoNS ExPLANATIoN

[-1 ,file.] required. fastQ format single-end 
input file or pair-end input file 1, eg, -1 
MCF7.fastq, which is the file name of 
a fastq dataset.

[-2 ,file.] FASTQ format pair-end input file 2. 
By default, when there is no input 2, 
it only processes the input file 1 and 
processes it as a single-end file. 

[-o ,dir.] the output directory. the default 
output directory is the user’s current 
directory. for example, if the cur-
rent directory in which the user runs 
HmPL is ‘/home/user/check.folder/’, 
then when running HmPL command 
line without specifying ‘-o’, the user 
would have all the output files in  
‘/home/user/check.folder’.

[-p ,string.] Required. The prefix written to the out-
put file names. eg, –p MCF7, then the 
output file will have the prefix MCF7 
(eg, mCf7.site, or mCf7.cluster). 

[-r ,file.] The name of the file that lists the 
genome reference sequence (ie, *.fa) 
files that users will use to do align-
ment. Please note that this “-r” option 
must be provided whether or not the 
“-I” (ie, alignment index) option is 
provided. otherwise, the “acgt-count” 
function in the Brat-bw package will 
not generate proper output files. For 
example, we set it as “-r/home/refer-
ence/hg19/hg19.fa.filename.txt”
This “hg19.fa.filename.txt” may 
include the following lines that show 
the location of the fasta files for chro-
mosomes 10 and 11 (or other chro-
mosomes) as shown below:
/home/projects/data/reference/hg19/
chr10.fa
/home/projects/data/reference/hg19/
chr11.fa

[-f ,sanger or illumina.] fastQ format: HmPL accepts 
sanger or illumina format FASTQ files 
as input data; default is sanger.

[-a ,yes or no.] adapter trimming: Users can select 
whether or not to utilize cutadapt 
for adapter trimming (default is no 
adapter trimming).

[-a ,stirng.] adapter sequences: HmPL accepts 
two adapter sequence inputs, sepa-
rated by a comma, and default is 
aGatCGGaaGaGCGGttCaGCaG
GaatGCCGaG,aGatCGGaaGaGC
GtCGtGtaGGGaaaGaGtGt.

[-t ,fix or brat.] Quality trim flag: Specifies whether 
to use Brat dynamic trimming func-
tion (default is Brat-trim) or the user 
can specify ‘fix’ to apply fixed quality 
trimming (ie, trim off a fixed number 
of bases). 

[-n ,int.] Fixed quality trimming: Specifies the 
number of bases to be trimmed at the 
5’ end (default is 5).

[-n ,int.] Fixed quality trimming: Specifies the 
number of bases to be trimmed at the 
3’ end (default is 10).

(Continued)
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is given below (the command options of Parse.HMPL.pl are 
explained in Table 2).

perl /,the_diretory_of_HMPL./code/Parse.HMPL.pl 
-1 ,input 1. [OPTIONS].

In order for users to test the HMPL, we have prepared 
a small dataset with 5 million sequencing reads (a FASTQ 
*.fastq file), the human chromosome 22 reference sequence  
(a FASTA *.fa file), and the example scripts. Users may align 
these 5-million reads to chromosome 22 and then identify 
hemimethylated sites using both Part I and Part II of HMPL. 
Users simply need to download the data, install the HMPL 
package, and then change the data path/directory in the 
example script accordingly to run the HMPL. It takes about 
11 minutes to run this small dataset using a Linux computer 
with 4 GB RAM. In addition, in order for users to explore the 
different options and arguments of HMPL, we have prepared 
a file named “README.” This file includes example scripts 
of running the HMPL using different command options and 
also explains to the user what to expect in the screen output. 
The small dataset, example scripts, and the “README” file 
can be downloaded from the following web link: http://hal.
case.edu/∼sun/HMPL/HMPL.zip.

In order to show the running time of HMPL in prac-
tice, we use two human example datasets. Each dataset has 
∼50 million raw sequencing reads, which will be introduced in 
detail in the Results section. Using the Linux server with dual 
quad-core 2.66 GHz Xeon E5430 processor that has 4 GB 
RAM for each core, it takes ∼4 hours to run Part I (the pre-
processing part) of the HMPL, Pre.HMPL.pl, if the reference 
index is provided. If the index file were not provided, it would 
first take about three to four additional hours to build a ref-
erence index for the whole human genome, which has about 
3 billion bases (∼3 GB data). Therefore, it is more efficient to 
first build a reference index for the alignment tool BRAT-bw 
before running the HMPL. It requires ∼19 minutes to run 

Table 1. (Continued)

oPTIoNS ExPLANATIoN

[-Q ,yes or no.] Whether or not to do the quality 
assessment using fastQC (default 
is no).

[-I ,dir.] the index directory for Brat-bw 
alignment. If the index folder is pro-
vided, it will be automatically used. 
otherwise, it will build index, which is 
the default setting. 

[-i ,positive integer.] to specify minimum insert size for 
paired-end mapping, the minimum 
distance allowed between the left-
most ends of the mapped mates on 
the forward strand (default is 0).

[-m ,positive integer.] to specify maximum insert size for 
paired-end mapping, the maximum 
distance allowed between the left-
most ends of the mapped mates on 
the forward strand (default is 1000).

 

Table 2. the command options of HmPL Part II (Parse.HMPL.pl).

oPTIoNS ExPLANATIoN 

[-1 ,file.] Input file 1 is required. Note: For both Input 1 
and Input 2 (see next row), the user can enter 
two kinds of inputs. one is the combined meth-
ylation level data (eg, “ -1 mCf7.CG.combine”), 
and the other is the “acgt-count” output files, 
which includes uncombined methylation levels. 
If it is uncombined, that means the methylation 
levels on the forward and reverse strands are 
in two files and they should be separated by 
comma (,) when providing them as input files, 
eg, “-1 mCf7.CG.forward,mCf7CG.reverse”.

[-2 ,file.] Input file 2, optional. If specified, the pipeline 
will process both inputs and compare their 
final results. Default is only to process the 
input file 1, and not to do the comparing. Note: 
for both Input 1 and Input 2, the user can 
enter two kinds of inputs as explained in the 
above row. 

[-o ,dir.] The output directory where all the output files 
are created and written. Default is “ ,current_
dir./final.results/.”

[-c ,int.] the value for selecting the methylation cover-
age is greater than B. (Default: B = 0). on each 
strand there must be at least B reads to cover 
a specific CpG site in order for HmPL to check 
if it is hemimethylated. Changing the “–c” value 
from a smaller value (eg, -c 5) to a larger value 
(eg, -c 10) will obtain a shorter list of hemim-
ethylated sites and have a smaller false discov-
ery rate. 

[-l ,real.] the cutoff value for selecting low methylation 
level. (Default: 0.2, range: [0.05, 0.4]). this 
value corresponds to the “L0” mentioned in 
step 4 of the pipeline. If the methylation level 
is less than this “-l” value, it will be claimed 
as unmethylated. Changing “-l” value from a 
smaller value (eg, -l 0.1) to a larger value (eg, 
-l 0.2) may give a longer list of hemimethylated 
sites, but there may be a larger false discovery 
rate. 

[-h ,real.] the cutoff value for selecting high methylation 
level. (Default: 0.8, range: [0.6, 1]). this value 
corresponds to the “H0” mentioned in step 4 of 
the pipeline. If the methylation level is greater 
than this “-h” value, it will be claimed as methy-
lated. Changing “-h” value from a smaller value 
(eg, -h 0.7) to a larger value (eg, -h 0.9) may 
give a shorter list of hemimethylated sites, but 
there may be a smaller false discovery rate.

[-d ,int.] the maximum distance between two CpG sites 
to be selected as a cluster with default 50. 
If the maximum distance is changed from a 
smaller value (eg, -d 50) to larger value (eg, -d 
100), the number of CpG sites in a cluster will 
be larger, but the total number of hemimethyla-
tion clusters will become smaller. 

[-r ,file.] The reference gene file, not the genome refer-
ence sequence files. This file is used to provide 
genetic annotation (ie, gene names) to the 
hemimethylation sites. for example, we set it 
as “-r/home/reference/hg19/refGene.txt”. this 
“refGene.txt” file contains the gene names and 
gene information downloaded from the UCsC 
genome browser. 

[-D ,int.] the distance of promoter region (Default: 
D = 1000). that is, if the transcript starting 
position is located at X = 5,000 bp on a chro-
mosome, the promoter region of this gene is 
defined as from X−D = 4,000 to X = 5,000. 
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Part II of HMPL (the parsing pipeline, Parse.HMPL.pl) when  
using uncombined input with the default coverage setting.  
The uncombined input means that positive and negative strand 
methylation levels of all CpG sites are provided as two separate 
files. If the positive and negative strand methylation data are 
combined, it will only take 15 minutes for HMPL to generate 
the results. If users have a faster Linux server or high-perfor-
mance computing clusters that have more memory and com-
puting power, it will take much less time (eg, a couple of hours) 
to run the HMPL preprocessing pipeline (Pre.HMPL.pl),  
and it will take just a few minutes to get the results of parsing 
and comparing two samples using the HMPL Part II (Parse.
HMPL.pl).

results
The HMPL pipeline can be used to compare any two samples 
of bisulfite sequencing data. In this paper, we demonstrate the 
use of HMPL using publicly available bisulfite-treated methy-
lation sequencing datasets for cell lines MCF10A and MCF7.25 
These two samples are breast cancer cell lines. Because a num-
ber of hypermethylated genes have been reported for breast 
cancer cells35 and there are hemimethylation patterns reported 
in individual genes,11–13 it is very likely that many CpG sites 
have been hemimethylated in these two cell lines. MCF10A 
is nontumorigenic and MCF7 is tumorigenic. We select these 

two cell lines because their hemimethylation patterns could 
be different. The bisulfite methylation sequencing data of 
MCF10A and MCF7 and more information about these two 
cell lines can be found from the corresponding references.25,36 
The sequencing reads of MCF10A and MCF7 are generated 
using the reduced representative bisulfite sequencing (RRBS) 
protocol.16 There are 54,295,326 and 50,054,248 sequencing 
reads for MCF10A and MCF7, respectively, and the read 
length is 50-base for each dataset.

In order to identify hemimethylation singletons and clus-
ters in both MCF10A and MCF7 and compare these two 
samples, we have run both Part I (Pre.HMPL.pl) and Part II 
(Parse.HMPL.pl) of the HMPL. In this section, we mainly 
focus on showing the hemimethylation result, which is the 
summary of the HMPL Part II (Parse.HMPL.pl) output. For 
a detailed description of the output files, see Table 3.

The hemimethylated singleton and cluster patterns 
are compared and summarized in Figure 3. In this figure,  
“I. Singleton” means comparing the singleton hemimethy-
lated CpG sites in MCF10A and MCF7. “II. Consecutive 
Polarity Cluster” shows the results of comparing the polarity 
(or reverse) clusters that include two consecutive CpG sites; 
no other CpG sites are located between these two sites. “III. 
Non-Consecutive Polarity Cluster” means comparing the 
polarity (or reverse) clusters that include two CpG sites that 

Table 3. the description of HmPL Part II (Parse.HMPL.pl) output files.

fILE NAME CoNTENTS

*.grX
eg, mCf10a.gr5

the CpG sites with coverage greater than X (X . 0).

*.all.Hm.sites
eg, mCf10a.gr5.all.Hm.sites

the hemimethylated CpG sites identified by the high and low cutoff values.

*.all.Hm.sites.annotated
eg, mCf10a.gr5.all.Hm.sites.annotated

the annotated hemimethylated sites (ie, gene names are provided).

*.all.labelled.CG
eg, mCf10a.gr5.all.labelled.CG

the CpG sites with coverage greater than X and with the labels of methyla-
tion states (P: partially methylated, m: methylated, U: unmethylated).

*. summary
eg, mCf10a.gr5.summary

The summary file for all the methylation states of single hemimethylation 
sites and clusters.

*.all.HmClusters
eg, mCf10a.gr5.all.Hm.Clusters

all hemimethylated clusters.

*.all.rev.Clusters
eg, mCf10a.gr5.all.rev.Clusters

all of the polarity (or reverse) clusters, including both consecutive and 
non-consecutive polarity clusters.

*.non.rev.Clusters
eg, mCf10a.gr5.non.rev.Clusters

the hemimethylated clusters that are not polarity patterns.

*.singleton
eg, mCf10a.gr5.singleton

single hemimethylated CpG sites.

*.consec.revs.Clusters
eg, mCf10a.gr5.consec.revs.Clusters

the consecutive polarity (or reverse) clusters (ie, with just two consecutive 
CpG sites).

*.non.consec.revs.Clusters
eg, mCf10a.gr5.non.consec.revs.Clusters

the non-consecutive polarity clusters (ie, with two CpG sites that are not 
consecutive).

*.compare
eg, mm.gr5.all.Hm.sites.annotated.compare
mm.gr5.consec.revs.Clusters.compare
mm.gr5.non.consec.revs.Clusters.compare
mm.non.rev.Clusters.compare
mm.gr5.singleton.compare 

the results of comparing two samples.
(Note: To save space, we use “MM” to denote “MCF10A.MCF7” for the file 
names in the left column).
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are not consecutive. There is at least one CpG site located 
between these two sites, but there are either no sequencing 
reads (or data) or no hemimethylation sites between them. 
“IV. Non-Polarity Cluster” refers to the clusters that do not 
have the polarity (or reverse) pattern (eg, the patterns shown in  
Fig. 1A and C).

Figure 3 and Table 4 show the results of comparing 
MCF10A with MCF7, which are summarized based on the 
output files named “*compare” as shown in the last row of 
Table 3. The comparison results indicate that the hemimethy-
lation patterns between the non-tumorigenic sample MCF10A 
and tumorigenic sample MCF7 are different at some CpG 
sites and/or genomic regions. Therefore, it is important that 
these CpG sites are investigated further. Our pipeline HMPL 
has provided gene annotation files for all CpG sites by giv-
ing names of genes in which hemimethylated CpG sites are 
located, as well as the names of genes in whose promoter 
regions the hemimethylated CpG sites are located.

The results of comparing MCF10A and MCF7 show that 
there are more polarity (or reverse) clusters (eg, Fig. 1B) than 
the single-strand hemimethylation clusters (eg, Fig. 1A). This 
may be as a result of the fact that the methylation sequenc-
ing data we have used are generated by the RRBS protocol,16 
which only sequences a small percentage of CpG sites in a 
human genome. In fact, there are ∼5% of the CpG sites with 
at least 3× coverage in the RRBS data we have analyzed. If we 
use the whole genome bisulfite sequencing (WGBS) data, it 

I Singleton II Consecutive polarity cluster

MCF10A: 3377 sites MCF10A: 407 sites MCF7: 570 sitesMCF7: 4787 sites

A: 1507

B: 455

C: 1415

D: 1361

E: 2011

A: 155

B: 30

C: 222

D: 119

E: 229

III Non-consecutive polarity cluster IV Non-polarity cluster

MCF10A: 1240 sites MCF10A: 32 sites MCF7: 81 sitesMCF7: 1726 sites

A: 377

B: 121

C: 742

D: 377

E: 607

A: 13

B: 12

C: 7

D: 20

E: 54

figure 3. mCf10a and mCf7 hemimethylation pattern comparison results. In each Venn diagram, the “a” entry means the number of CpG sites or 
clusters that are hemimethylated in the mCf10a sample, but not in the mCf7 sample. the “B” entry shows the number of CpG sites or clusters that 
are hemimethylated in the mCf10a sample, but there are no sequencing reads for these CpG sites in the mCf7 sample. the “C” entry represents the 
number of CpG sites or clusters that are hemimethylated in both mCf10a and mCf7. the “D” entry indicates the number of CpG sites or clusters that 
are hemimethylated in the mCf7 sample, but not in the mCf10a sample. the “e” entry means the number of CpG sites that are hemimethylated in the 
mCf7 sample, but there are no sequencing reads for these CpG sites in the mCf10a sample.

is very likely that more single-strand hemimethylation clus-
ters would be identified. Currently, we are not aware of any 
WGBS data for either MCF10A or MCF7. Therefore, we 
have used the available RRBS data to demonstrate the usage 
of HMPL. Even though RRBS data are not ideal for identi-
fying all hemimethylation sites in an entire genome, we have 
found many hemimethylation singletons and clusters, which 
show the capability of our HMPL package. In fact, HMPL 
can be used to compare any two samples with data generated 
using either the RRBS or WGBS protocol.

discussion
For the MCF7 sample, 532 genes have at least three hemim-
ethylated CpG sites. In order to see if the genes with hemim-
ethylated CpG sites are biologically important or meaningful, 
we have further investigated the 532 genes by comparing them 
with oncogenes, breast cancer methylated genes, and tran-
scription factors. The comparison results show that seven of 
these genes are methylated, 17 are oncogenes, and 62 are tran-
scription factors. We have also conducted the gene set enrich-
ment analysis (GSEA) for these 532 genes using the GSEA 
software package and the molecular signature database pro-
vided by the Broad Institute.37 The analysis results show that 
87 genes are significantly represented in (or overlapped with) 
10 cancer modules (with P-value , 0.05), which are gene sets 
that are significantly changed in a variety of cancer conditions. 
These 87 genes and the 10 cancer modules they belong to are 
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provided in Table 5. A detailed description of these 10 mod-
ules can be found online.38 The 532-gene list is included in the 
HMPL.zip file that can be downloaded from the following 
web link: http://hal.case.edu/∼sun/HMPL/HMPL.zip.

There are a number of alignment tools for bisulfite 
methylation sequencing data, such as BRAT,29 BRAT-
bw,31 BSMAP,39 BS Seeker,40 Bismark,41 MethylCoder,42 
RMAPBS,43 Pash,44 and BatMeth.45 A comprehensive list 
of these tools can be found at omictools.com.46 Among all 
these available tools, we have tested BRAT-bw, BRAT, and 
BSMAP. We have found that they provide similar results, 
but BRAT-bw is faster. BRAT-bw is user-friendly and has 
the following useful features: (1) it can align both single-end 
and paired-end reads, (2) it can produce the ACGT count 
for all cytosines in a genome, (3) it can account for overlap-
ping paired-end reads, and (4) it can check strands. If users 
prefer another alignment tool, they can obtain the alignment  
results and methylation levels using their preferred alignment 
tool, and then run Part II of the HMPL to obtain hemimethy-
lated singletons and clusters. If necessary, this can be done with 
some minor format changes of their alignment output files. 
Reformatting is easy because the parsing pipeline of HMPL 
(ie, Part II) only requires data with the following columns that 
most alignment tools provide for two DNA strands: chromo-
some, start position, end position, total number of sequencing 
reads, methylation level, and DNA strand.

The cutoff values used in HMPL, especially the ones pro-
vided in Table 2 for the parsing pipeline (ie, part II), should 
be determined depending on the sequencing quality and cov-
erage. If the user has a sequencing dataset with very good 

Table 4. the summary of mCf10a and mCf7 hemimethylation patterns.

MCf10A MCf7

CLUSTER PATTERN fREqUENCY CLUSTER/PATTERN fREqUENCY

mmmmmm-UUUUUU 1 mmmmm-UUUUU 1

mmmmm-UUUUU 1 mmmm-UUUU 1

mmm-UUU 2 mmm-UUU 3

mm-UU 6 mm-UU 27

mmU-UUm 2 mmU-UUm 1

mUm-UmU 1 mUm-UmU 6

mUmU-UmUm 2 mUmU-UmUm 4

mU-Um 1643 mU-Um 2290

Um-mU 4 mUU-Umm 2

UmU-mUm 3 Umm-mUU 1

UU-mm 9 Um-mU 6

UUU-mmm 3 UmU-mUm 8

UUUU-mmmm 1 UmUmU-mUmUm 1

UUUUU-mmmmm 1 UU-mm 20

UUU-mmm 5

UUUU-mmmm 1

 

Table 5. Ten significant cancer modules identified using GSEA. The 
first column is the gene symbol, and the other columns indicate if a 
gene belongs to a specific cancer module. “X” shows that a gene 
belongs to that module, and a blank cell means that a gene does not 
belong to a specific module.

gENE 
SYMBoL

CANCER MoDULE NUMBER (oR ID)

38 334 100 137 66 11 55 88 41 37

GRK5 X X

TRPM2 X X X X X X X X

NRG2 X X X X X X X X

ALDH4A1 X X X X X X X

PLXNA2 X X X X X X

IQSEC1 X X X X X

COL6A2 X X X X X X

SLMO1 X X X X

CNKSR1 X X X X

FBN2 X X X

SLC38A10 X X X

DNM2 X X X

PLEC X X X

ZBTB7A X X X

TNFRSF10D X X

PLXND1 X

LAMA5 X

TBX2 X

(Continued)
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Table 5. (Continued)

gENE 
SYMBoL

CANCER MoDULE NUMBER (oR ID)

38 334 100 137 66 11 55 88 41 37

HOXB3 X

LTBP2 X

CDH15 X

KIAA0182 X

VAV2 X X

DMD X

BMP6 X

FRMD4A X

LHX3 X

HS6ST1 X

OSBPL2 X

SNED1 X

MAP3K10 X

GRIN2C X

BAIAP2 X

CACNA1C X

GNG7 X X X X X X X

CDH4 X X X X X X X

PLCH2 X X X X X X

SOX9 X X X X X X

PTPRN2 X X X X X X

CACNA2D2 X X X X X

GNG4 X X X X X

CDH22 X X X X X

GRIN1 X X X X

COL9A3 X X X X

CRMP1 X X X X

CTSF X X X X

ATP2B2 X X X X

PRPF6 X X X X

GABBR2 X X X X

DGCR2 X X X

CA4 X X X

ESR1 X X X

SBNO2 X X

KCNQ1 X X

ATP11A X X

ALDH1L1 X X

TBCD X X

COL18A1 X X

CBS X X

PEPD X X

(Continued)

Table 5. (Continued)

gENE 
SYMBoL

CANCER MoDULE NUMBER (oR ID)

38 334 100 137 66 11 55 88 41 37

SLC22A1 X X

GALNS X X

MYBPC2 X

SLIT3 X

DIDO1 X

PCBP3 X

CAMK2B X

MLLT1 X

INTS9 X

PARD3 X

PLXNA3 X

GREB1 X

SDC3 X

ATP8A2 X

LMTK3 X

CCDC85C X

C9orf167 X

RNF220 X

BEGAIN X

ESPN X

OBSCN X

BCR X

PITPNC1 X

KIAA1522 X

RXRA X

LHPP X

MED24 X

 

quality and high coverage, changing the cutoff value may 
not significantly affect the results. However, if the sequenc-
ing dataset has low coverage and poor quality, changing the 
cutoff values may lead to very different results. For this case, 
we recommend that users set up very stringent cutoff values to 
reduce false discovery rates. We set up the default values based 
on findings in previous publications, some basic and common 
knowledge of methylation sequencing data, and our experi-
ence with bisulfite sequencing data; however, every dataset is 
different. We suggest that the users first determine the quality 
and coverage of their data, and then try different values to see 
if their results are dramatically different. If results are dra-
matically different, users may choose results that are obtained 
based on stringent cutoff values, especially when they plan to 
do experimental validation. Using results based on stringent 
cutoff values can ensure a high validation rate and then the 
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user may expand their validation list by adding more hemim-
ethylated singletons or clusters from the list obtained with less 
stringent cutoff values.

Ideally, it is best to have a list of known hemimethylated 
and nonhemimethylated sites to study the true and false dis-
covery rates (or sensitivity and specificity) of HMPL. For the 
nonhemimethylated sites, we can choose the CpG sites that 
are located in the housekeeping genes, which are relatively 
stable and not likely to be methylated on either strand. In 
fact, housekeeping genes have been used for the purpose of 
“negative control” in previous methylation studies.47–49 For the 
example dataset MCF7, using the coverage cutoff of 5× (that 
is, at least five reads to cover each strand) and other default 
settings, there are 532 genes with at least three hemimethy-
lated sites. We compare these 532 genes with the 205 known 
housekeeping genes used in a previous study,49 and there is no 
overlap; therefore, none of these 532 genes are housekeeping 
genes. As for the known hemimethylated sites, to the best of 
our knowledge, no available list of genes or sites can be used 
as a “positive control.” This is because genome-wide hemim-
ethylation study is rarely done, and a few hemimethylated 
sites have been experimentally validated. Another possible 
way of validating the HMPL is to use simulated data. How-
ever, we have decided not to use this approach because there 
is little knowledge about genome-wide hemimethylation pat-
terns. With little known information, a simulation would be 
very arbitrary and the simulated data would not reflect true 
unknown patterns. The purpose of our HMPL development 
is to provide an exploratory tool for this research topic. For 
genes identified with a number of hemimethylated CpG sites, 
users may do further investigation by studying their biological 
functions and relationships with other genes using pathway 
analyses. Users may also do experimental validation to dis-
cover novel methylated or hemimethylated genes.

Our pipeline has two limitations. First, the HMPL is 
designed for identifying hemimethylation only at CpG sites, 
but not at any non-CpG sites (eg, CHG and CHH sites, where 
H represents A, C, or T in a DNA sequence). If users are inter-
ested, our algorithms may be modified to study the hemim-
ethylation of non-CpG sites. Second, our pipeline is developed 
for identifying hemimethylated sites (or clusters) by compar-
ing two samples, but it is not designed for comparing multiple 
samples in two or more groups. Because the hemimethylation 
study is an area with little research, HMPL is good for pre-
liminary studies. As for the topic of identifying hemimethyla-
tion patterns in multiple samples and in multiple groups, more 
sophisticated statistical methods may be used, and our group 
is working on projects related to this approach.

For the first step of the HMPL workflow, we have used 
the software package FastQC. Even though FastQC is not 
designed for bisulfite-treated methylation sequencing data, 
it can provide informative diagnostic plots for methylation 
sequencing data. If users find some serious sequencing quality 
issues in their data, we recommend that they check data more 

thoroughly using other available software packages, such as 
SAAP-RRBS,50 BSeQC,51 and MethyQA,27 before they 
interpret their HMPL results.

conclusion
Hemimethylation patterns are useful for studying DNA 
methylation events. Therefore, it is important to develop a 
software package to identify such patterns. To address this 
need, we have developed a new software package, HMPL, 
which includes both preprocessing and data parsing. For two 
samples, each with 50 million reads, it takes a few hours for 
HMPL to align the sequencing reads, and it only takes a few 
minutes to process the methylation level data. If users have 
obtained their coverage and methylation ratio data, Part II of 
HMPL can identify hemimethylation patterns in minutes.
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