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Prefrontal Cortex in Learning to Overcome 
Generalized Fear

Edward Korzus
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SUMMARY: Normal brain functioning relies critically on the ability to control appropriate behavioral responses to fearful stimuli. Overgeneralized fear 
is the major symptom of anxiety disorders including posttraumatic stress disorder. This review describes recent data demonstrating that the medial pre-
frontal cortex (mPFC) plays a critical role in the refining of cues that drive the acquisition of fear response. Recent studies on molecular mechanisms that 
underlie the role of mPFC in fear discrimination learning are discussed. These studies suggest that prefrontal N-methyl-D-aspartate receptors expressed 
in excitatory neurons govern fear discrimination learning via a mechanism involving cAMP response element-binding protein–dependent engagement of 
acetyltransferase.
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The concepts of fear memory accuracy and generalization  
reflect the ability of a subject to respond properly to a simi-
lar stimulus to that of the trained stimulus presented dur-
ing fear conditioning procedure. Specifically, the ability to 
distinguish between these two stimuli indicates the level of 
fear memory accuracy (discrimination), whereas elevated 
level of fearful responses to harmless stimuli is an indica-
tive of fear generalization. Fear memory accuracy is critical 
for survival, while fear generalization is effective for recall-
ing, threat assessment, and avoiding dangerous situations. An 
extreme or excessive fear of stimuli that are not harmful is 
referred to as fear overgeneralization. Overgeneralized fear 
is the major symptom of anxiety disorders including phobia, 
panic disorders, generalized anxiety disorder,1,2 and posttrau-
matic stress disorder,3 triggered by secure environment cues 
resembling those of the traumatic experience. Fear behavior 
is controlled by adaptive processes including discrimination, 
generalization, and extinction. These concepts were initially 
developed by Pavlov4 and have been extensively studied for 
a century. Discriminatory fear learning involves fear condi-
tioning, which is a form of classical Pavlovian conditioning4 
and has become the best studied behavioral model for asso-
ciative learning and its underlying synaptic and circuit-level 
plasticity.5–7 Multiple memory systems theory postulates that 
different types of memory are consolidated via hardwired 
pathways.8 In tone fear conditioning, tone [conditional stimu-
lus (CS)]-foot shock [unconditional stimulus (US)] associa-
tions are directly encoded through synaptic plasticity in the 

amygdala, which receives direct auditory inputs. During the 
contextual fear conditioning, the contextual stimulus (CS) is 
encoded by the dorsal hippocampus (and later consolidated 
by the hippocampus–prefrontal circuitry), whose outputs are 
subsequently associated with the US through synaptic plastic-
ity in the amygdala.5–7

The fact that expression of recent and remote long-term 
fear memories requires the dorsal hippocampus and medial 
prefrontal cortex (mPFC), respectively,9,10 suggests that the 
communication between these two brain regions controls tran-
sition from a recent state to remote state during system-level 
memory consolidation. Both regions appear to be engaged in 
context coding. In fact, context-specific neuronal ensembles 
were found in both regions.11,12 While the dorsal hippocampus 
and mPFC appear to track spatial information, the mPFC is 
likely to integrate contextual recognition of fear–context asso-
ciation with distinctive roles of infralimbic (IL) and prelimbic 
(PL) subregions of the mPFC.13,14 Fear behavior is differen-
tially regulated by PL and IL of the mPFC15–18 via increase or 
decrease of fear expression, respectively,18,19 which may be due 
to differential connectivity with the amygdala (Fig.  1).20–22  
This differential role of IL versus PL is of particular interest 
since, under the Hull-Spence theory of discrimination learn-
ing postulates, conditioned excitation (the result of reinforce-
ment) and inhibition (the result of nonreinforcement) are 
postulated to have generalization gradients.23–25 The algebraic 
summation of excitatory and inhibitory strength determines 
the response rate to test stimuli.26 For example, differential 
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conditioning increases unit and field responses to the condi-
tioned stimulus (CS+), reinforced with an electric shock CS+, 
whereas responses to the second stimulus that was nonrein-
forced (CS−) decreased.27 Both excitatory and inhibitory neu-
rons in the mPFC play important roles in the regulation of 
fear responses. For example, direct inhibition of fast-spiking 
interneurons in the dorsomedial prefrontal cortex disinhibits 
prefrontal excitatory neurons and promotes fear expression.28 
The mPFC can compensate for absence of dorsal hippocampus 
in contextual fear learning, while IL mPFC lesions enhance 
generalization of contextual fear and interfere with discrimi-
natory fear learning.29 In addition, the interaction between 
the thalamus and mPFC has been implicated in the contex-
tual fear generalization30,31 and the retrieval of long-term fear 
memories.32

That the mPFC is a locus for gating fear discrimina-
tion and danger assessment is supported by additional evi-
dence that includes animal studies in which an mPFC lesion 
impairs the ability to guide behavior, specifically when mem-
ory retrieval resolves conflicting dangerous and harmless con-
textual cues.33–36 A fear decline is associated with elevated 
activity in the mPFC as determined by activation of imme-
diate-early genes,37,38 blood oxygenation levels,39 cell firing,40 
and local field potentials.41 The mPFC has dense reciprocal 
anatomical and functional connections with sensory corti-
ces, thalamic sensory relays, and memory systems including 
the hippocampus (context, multisensory processing) and the 
amygdala, the critical locus for fear processing. Considerable 
evidence indicates that neurons in mPFC, basolateral amyg-
dala (BLA), and hip are functionally coupled at the theta 
range (4–12  Hz oscillations) during fear conditioning,42,43 
conditioned extinction,41 and discriminative fear learning.44 
Moreover, memory retrieval elicits mPFC neuronal activity 
patterns reminiscent of neural representations of behavioral 
contexts that govern successful recollection. Different behav-
ioral contexts evoke distinct firing of neuronal ensembles,12 
which can reset during uncertainty following environmental 
change45 or induce sudden transitions between neural ensem-
ble states accompanied by behavioral transitions.46

Multiple memory systems theory postulates that dif-
ferent types of memory are consolidated via hardwired path-
ways;8 however, how memories are integrated47,48 to specific 
neurons and synapses in a circuit remains unclear. While the 
circuit-, cellular-, and molecular-level mechanisms of fear 
extinction and contextual conditioning have been studied 
in the mPFC, much less is known about how the neural cir-
cuitry of the mPFC contributes to fear discriminatory learning. 
Glutamate, the main excitatory neurotransmitter is critically 
involved in fear memory.49 In addition, it has been demon-
strated that specific glutamate postsynaptic receptors such as 
N-methyl-D-aspartate receptors (NMDARs) are directly 
involved in various learning mechanisms including modulation 
of fear memory.50–53 Furthermore, NMDAR, Ca2+ signaling, 
transcription factor cAMP response element-binding protein 

(CREB), and CREB-binding protein’s (CBP’s) intrinsic his-
tone acetyltransferase activity (HAT) have been implicated as 
putative mechanisms for long-term memory encoding into cor-
tical circuits.54–56 Using fear discrimination learning assays, it 
was recently demonstrated that NMDAR-, CREB-, and CBP’s 
HAT-dependent signaling in the mPFC is required for suc-
cessful fear discrimination learning (Fig. 2).57,58 Thus, fear dis-
crimination is attained via the mPFC-dependent reduction of 
generalized fear responses to harmless stimuli.57,58 Both selec-
tive inhibition of CBP HAT or CREB function in the mPFC 
circuitry show strong deficit in fear discrimination learning.58 
A similar effect was observed in mice with selective deletion of 
NMDAR from excitatory neurons in the mPFC.57 These data 
suggest that successful fear discrimination involves prefrontal 
NMDAR-dependent mechanism governing decline of gener-
alized fear responses to harmless nonreinforced stimuli.

While both CBP and CREB are partners and both are 
implicated in long-term plasticity and memory consolidation in 
Aplysia, Drosophila, and mice, CREB has been strongly impli-
cated in adaptive alteration of neuronal excitability and mem-
ory allocation48 and it is possible that CBP HAT may mediate 
CREB-dependent changes in neuronal excitability. Four inde-
pendent manipulations to downregulate CBP acetyltransferase 
activity specifically in an adult living brain to avoid develop-
ment confound have been reported.55,59,60 Histones are believed 
to be the primary targets for CBP’s HAT activity; however, a 
number of nonhistone targets for CBP’s HAT activity, which 
are involved in chromatin remodeling and gene expression reg-
ulation, have been discovered.61–67 While the impact of histone 

Figure 1. fear behavior is differentially regulated by il and pl 
subregions of the mpfc (see text).
Notes: complex interactions and circuitry for fear discrimination 
learning also comprise the basolateral nucleus of the amygdala 
(Bla), the central nucleus of the amygdala (cen), and the amygdala 
intercalated neurons (itc).
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and nonhistone protein acetylation by CBP is not fully under-
stood, CBP’s HAT appears to be a critical component of a puta-
tive epigenetic mechanism that controls long-term memory.55,60

Recent data indicate that the mPFC plays a critical role in 
the refining of cues that drive the acquisition of fear response, 
including some molecular mechanisms that underlie this role. 
These data are in line with previous work showing that the 
mPFC supports fear extinction, because fear discrimination 
involves selective reduction of the response to nonreinforced 
stimuli, perhaps through interaction between the amygdala, 
hippocampal system, and mPFC during a consolidation of 
selective memories. The findings indicating that three compo-
nents of the molecular mechanism underlying long-term plas-
ticity in the mPFC (NMDAR, CREB and CBP HAT) are 
directly implicated in appropriate disambiguation of fear signals 
provide direct evidence that fear discrimination involves long-
term memory coding into the prefrontal excitatory circuitry. 
Modern neuroscience now has the tools to begin to characterize 
the mechanisms and neural circuits responsible for fear memo-
ries remaining distinct and resistant to confusion, and further 
experiments are needed to reveal what type of information is 
consolidated in the mPFC that is required for the attainment of 
fear memory accuracy after initial fear generalization.
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