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Introduction
Cardiac muscle cells derived from human embryonic stem 
cells (hESC-CMs) and human-induced pluripotent stem cells 
(hiPSC-CMs) hold great potential in many different medical 
applications such as regenerative medicine,1 drug screening,2 
and disease modeling.3,4 Since the advent of robust methods 
for inducing cardiac differentiation in stem cells,5 several 
groups have turned their efforts toward assembling this new 
cell source into functioning engineered heart tissue (EHT). 
EHT specimens have enabled the first experiments quanti-
fying the physiological behavior of stem cell-derived myo-
cardium. While initial results are encouraging, more work is 
required in order to establish the degree to which these ini-
tially fetal-like cells have been successfully transformed into 
mature cardiomyocytes.

During cardiogenesis and maturation, the heart is exposed 
to marked changes in hemodynamic loading, hormonal 
regulation, and oxygen levels. These perturbations coincide 
with adjustments to contractile performance,6 which can be 
observed through in vitro measurements of muscle mechanics. 
Developmental changes to contraction are achieved in part by 
shifts in protein isoforms found in the myofilament contractile 
apparatus. Given the extensive literature on myofilament 
mechanical function and protein isoform expression during 

development,6,7 these characteristics constitute a powerful set 
of markers for assessing the maturity of hESC/hiPSC-CMs. 
Although a few studies have measured mechanical function 
in various forms8–11 or the expression of certain myofilament 
genes in hESC/hiPSC cultures,10–16 the full potential of these 
markers has not been exploited.

In this commentary, we consider the use of stem cell-
derived cardiomyocytes as a tool for disease modeling, with an 
eye toward how this application may be impacted by the degree 
of myofilament maturation. We examine the state of the art 
in achieving maturation by comparing the reported contractile 
performance of EHTs to adult human myocardial data from 
the literature. We discuss how remaining phenotypic gaps 
might relate to immature myofilament protein isoform expres-
sion, and endeavor to show that computational analyses, in 
conjunction with the extensive literature on cardiac myofila-
ment maturation, will point the way toward new milestones on 
the path to mature in vitro models of cardiac muscle.

Efforts to Model Genetic Heart Disorders with Stem 
Cell-Derived Cardiomyocytes
With the emergence of induced pluripotent stem cell (iPSC) 
technology, it is possible to generate cardiomyocytes from 
patients with inherited heart disorders. Although these cells 
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are immature in many respects, they do exhibit some in 
vitro phenotypes that resemble clinical pathologies.2,17,18 The 
genetic specificity of abnormal phenotypes is enhanced by the 
possibility of creating control iPSCs from close family mem-
bers that lack the mutation of interest.19 A further advantage 
is that genetic engineering has become much more accessible 
with the emergence of new genetic editing techniques such 
as CRISPR/Cas9.20 Patient-derived iPSCs can be genetically 
engineered to remove mutations, or, alternatively, disease-
causing mutations can be introduced into control cells to test 
the true pathogenicity of a suspected mutation.19

To date, iPSC lines have been created from patients 
with arrhythmogenic right ventricular cardiomyopathy,21–23 
catecholaminergic polymorphic ventricular tachycardia,24–26 

cardiac hypertrophy,27 duchenne muscular dystrophy,28 dilated 
cardiomyopathy (DCM),18,29 familial hypertrophic cardio-
myopathy (HCM),17 Friedreich ataxia-associated HCM,30 
hypoplastic left heart syndrome,31 Jervell and Lange-Nielsen 
syndrome,32 Leopard syndrome,33 and Long QT syndrome.34–37 
Cardiomyocytes differentiated from these lines have been 
studied to search for phenotypes and disease mechanisms in 
an in vitro setting. These efforts are reviewed in greater detail 
elsewhere.3,4,38

Although these initial reports demonstrate great poten-
tial for hiPSC-CMs in cardiac disease modeling, specific 
findings must be interpreted with caution. In their detailed 
review on current limitations of hiPSC, Eschenhagen et al.38 
highlight that it remains subject to debate whether cultured 
hiPSC-CMs from patients with sarcomeric mutations reca-
pitulate aspects of the disease pathology or only the influence 
of the sarcomeric mutation on induced differentiation and cell 
culture.

For instance, Lan et  al.17 generated iPSC-CMs from a 
10-member family cohort carrying a missense mutation in the 
myosin heavy chain gene (MYH7). These cell lines exhibited 
several characteristics of the HCM phenotype, such as cellular 
hypertrophy, calcineurin–NFAT (nuclear factor of activated 
T cells) activation, upregulation of hypertrophic transcription 
factors, as well as irregular calcium transients and contrac-
tile arrhythmias when compared to healthy control iPSCs. 
They observed that the Arg663His MYH7 mutation leads to 
arrhythmias and elevated intracellular diastolic Ca2+ at the 
single-cell level even before the onset of cellular hypertrophy.

The implication of these findings is that the primary 
mechanism by which myosin mutations trigger hypertrophy is 
through altered intracellular Ca2+ cycling. Such a mechanism is 
feasible: Increased myosin–actin affinity, which could be a con-
sequence of this mutation, is known to increase the Ca2+ sen-
sitivity and the amount of Ca2+ buffered by the myofilaments. 
Increased buffering capacity would likely have the effect of 
elevating the diastolic Ca2+ levels in cells, as observed. Persis-
tently elevated Ca2+ levels would in turn chronically overacti-
vate the hypertrophic calcineurin–NFAT signaling pathway. 
However, it is possible that such a mechanism is only observed 

in immature iPSC-CMs whose myofilaments may already 
have increased Ca2+ sensitivity and buffering capacity. Against 
a mature background that buffers less Ca2+,39 the effects of the 
myosin mutation may be not be sufficient to trigger a patho-
genic hypertrophic response. Hence, while the study exposes 
an interesting potential disease mechanism, its application to 
adult physiology cannot be assumed without knowing more 
about the status of myofilament maturation in these particular 
cells. In other words, the relevance of in vitro model results 
to clinical disease depends critically upon adequate cellular 
maturation. In this regard, results obtained with hiPSC-CMs 
in vitro are still somewhat limited.38

Efforts to Characterize and Improve Maturation in 
Stem Cell-Derived Cardiomyocytes
In general, stem cell-derived cardiomyocytes tend toward an 
immature fetal phenotype (reviewed elsewhere40,41). hESC/
hiPSC-CMs are less likely to be multinucleated than adult 
cardiac cells, and the overall expression levels of contractile 
and cytoskeletal genes are below those commonly seen in fetal 
or adult cardiomyocytes.42,43 Furthermore, in hESC/hiPSC-
CMs the subcellular structures required for normal excitation 
contraction coupling and Ca2+ handling are missing or poorly 
developed.40 Transverse tubules in particular are conspicu-
ously absent.40,44–47 As a consequence, in hESC/hiPSC-CMs 
most of the intracellular Ca2+ transient comes from influx 
through sarcolemmal channels rather than release from the 
sarcoplasmic reticulum. This process differs greatly from adult 
EC coupling, during which calcium-induced calcium release 
accounts for 70% released Ca2+.48 This explains why hESC/
hiPSC-CMs typically exhibit smaller and slower Ca2+ tran-
sients than their adult counterparts.49 Some experiments sug-
gest that these deficits in Ca2+ handling maturation are more 
severe in hiPSC-CMs than cells derived from hESCs.50

Other indications of cellular immaturity in hESC/
hiPSC-CMs are a smaller overall size, lack of characteristic 
sarcomere formation, spontaneous beating, fetal-like action 
potentials, dependence on glycolosis rather than fatty acid 
oxidation for the production of ATP, and fewer numbers of 
mitochondria.40,51–53

The degree of maturation observed in hESC/hiPSC-
CMs cells is subject to a variety of factors such as the differen-
tiation protocol, length of culture, presence of growth factors, 
co-culture with other cell types, and the spatial configuration 
of cells [two-dimensional (2D) vs three-dimensional (3D) 
culture].40,54 Efforts to promote maturation have ranged from 
altering culture conditions, increasing culture time, and apply-
ing physical cues (mechanical and electrical).41,54–57 Given 
that human neonatal cardiomyocytes require several years to 
achieve their adult phenotype, Lundy et al.56 investigated the 
influence of culture duration on maturation. In comparison 
to 20–40 days, a culture period of 80–120 days led to faster 
Ca2+ transient kinetics, increased contractile performance, 
better organized sarcomeres with Z-disks and organized  

http://www.la-press.com
http://www.la-press.com/journal-biomarker-insights-j4


In vitro maturation of cardiomyocytes

93Biomarker Insights 2015:10(S1)

A- and I-bands, 10-fold increase in the fraction of multinucle-
ated CMs, and expression levels of MYH6 and MYH7 that 
almost match the expression profiles in the adult human heart. 
In a different study, Yang et al treated hiPSC-CMs with the 
growth hormone tri-iodo-l-thyronine (T3) for 1 week.55 This 
led to significant increases in cell size and sarcomere length, 
increased mitochondrial function, higher peak force, improved 
contractile kinetics, and faster Ca2+ transients.

There is ample evidence to suggest that forming imma-
ture cardiomyocytes into structures resembling native car-
diac tissue (as opposed to 2D culture) enhances maturation. 
Three-dimensional culture increases action potential propa-
gation speed, force transduction, and contractile tension.58  
A study directly comparing hESC-CMs seeded in 3D hydro-
gel patches with 2D monolayer cultures also found higher con-
duction velocities, longer sarcomeres, and higher expression 
levels of key cardiac genes such as cardiac troponin T (TnT), 
alpha myosin heavy chain, and SERCA2.10

Another critical advantage gained by assembling hESC/
iPSC-CMs into 3D tissue specimens is the ability to apply 
specific mechanical loading regimes to the cells in culture 
and measure their overall mechanical performance under 
near-physiological conditions. Currently, creating ribbon-
like EHTs using molded hydrogels is the most common 
approach.9,59–61 This technology was initially implemented 
with rat neonatal ventricular myocytes, but more recently 
EHTs seeded with human stem cell-derived cardiomyocytes 
have emerged.9–11,16,59,62

The advent of EHTs seeded with hESC/hiPSC-CMs 
has coincided with an increased effort to design bioreac-
tors that mimic the native cardiac environment by applying 
mechanical loads and electrical stimulation. Mechanical 
stretch16,62 and electrical pacing9,14 of EHTs have both been 
extensively used to improve function and maturation levels 
of engineered cardiac constructs seeded with hESC-CMs. 
Recently, efforts have also been made to simultaneously 
apply both stimuli in a realistic manner. Morgan et al.63 were 
able to develop a bioreactor system for rat EHTs that could 
apply a delayed electrical stimulation after applied cyclical 
mechanical stretch in an effort to mimic isovolumetric con-
traction, which ultimately led to higher protein expressions 
of SERCA2 and cardiac TnT when compared to less physio
logical culture conditions.

Although efforts to characterize and improve matura-
tion of hESC/hiPSC-CMs are well under way, we cannot 
confidently state how close the field is to recapitulating adult 
cardiac muscle behavior. One reason is that maturation is 
multifaceted, and not clearly defined by any widely accepted 
standard. Another is that tools for quantitative analysis, 
which would help identify and explain molecular aspects of 
maturation, have not yet been applied to the problem. One 
way forward could be to focus on isometric twitch kinetics as 
a simple but comprehensive readout of EHT maturity and an 
object of quantitative analysis.

Characterization of Twitch Dynamics as a 
Comprehensive and Integrative Measure of 
Myofilament Maturation

Introduction to myocardial twitch dynamics. The time 
course of cardiac muscle twitch force (Fig.  1A) has been 
studied extensively under diverse circumstances. In a typical 
experiment, linear muscle specimens such as papillary muscles 
or trabeculae are dissected and mounted in a bath that main-
tains physiological conditions. Muscles are attached to a force 
transducer that quantifies twitch force as a function of time, 
and electrodes placed in the bath allow the contraction fre-
quency of the muscle to be controlled. In the most common 
experimental procedure, muscle specimens are held at constant 
length during contraction (isometric conditions). The over-
all muscle length for a series of several contractions is often 
adjusted in order to examine the force–length relationship.

After twitches are measured, it is common practice to 
transform the force recordings into descriptive scalar prop-
erties. These include the peak twitch tension, minimum 
and maximum time derivatives of tension (dT/dt min and 
max), time from stimulus to peak tension (TTP), and time 
from peak tension to 50% relaxation (RT50), among others 
(Fig. 1B). Typical values for these scalar properties, as well as 
their dependence on muscle length, stimulation frequency, and 
adrenergic stimulation constitute the “physiological” behavior 
of intact cardiac muscle. These tests or some subset thereof 
are frequently invoked in studies of ESC- or iPSC-derived 
myocardial mimics. The work of Turnbull et al.11 is perhaps 
the most comprehensive example.

Isometric twitch responses are known to depend upon 
the expression of specific myofilament protein isoforms, many 
of which are developmentally regulated. Hence, the measure-
ment of twitch dynamics can function as a means of assess-
ing the maturation of cardiac myocytes, including maturation 
of myofilament protein expression. Indeed, some investiga-
tors are viewing maturation from a functional standpoint as 
achieving twitch force properties that mimic available data 
from adult myocardium.11 What is less commonly recognized 
is that the twitch force characterizations of in vitro cardiac 
muscle differentiation hold abundant information that could 
be related to the expression of specific myofilament protein 
isoforms.

Comparison of twitch dynamics in adult and ESC/iPSC-
derived myocardium. A comparison of published twitch force 
records from human EHTs shows substantial diversity. This can be 
seen easily in the qualitative comparison presented in Figure 1C–E. 
We have digitized records from human EHTs seeded with hESC-
CMs10,11 and hiPSC-CMs8 and overlaid them on normalized 
twitch traces from adult human myocardium.64,65 All of the records 
shown in Figure 1C–E were collected at physiological temperature 
and a pacing rate of 1 Hz. The twitch measurements in panels C and D  
resemble adult kinetics to some degree, while that of panel E is 
clearly slower to contract and relax when compared to the adult 
traces. Although its kinetics are substantially slower, it should be 
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noted that the twitches measured by Zhang et al.10 are the only 
ones to date that achieve peak tension values close to native adult 
myocardium, with all others being approximately 10-fold smaller.

Each of the human EHT studies cited here extracted sca-
lar properties from twitch records in order to quantify contrac-
tile behavior. Unfortunately, the analysis details and selected 
properties are not consistent across these studies, meaning 
that quantitative comparisons between them are limited. They 
are also limited by the fact that twitch records were obtained 
under slightly different muscle length protocols in each study. 
However, some general comparisons are possible, and from 
them we can glean a general feeling for the state of the art 
with regard to twitch maturation.

For adult myocardial preparations, typical contractile 
values at 1  Hz pacing rate range around a peak tension of 
20 mN/mm2, a TTP of about 190 ms, and RT50 of 120 ms 
in left ventricular muscle strips.64 Healthy myocardium shows 
a bell-shaped force–frequency curve peaking at around 3 Hz. 
Increasing the stimulation frequency from 1 to 2.5 Hz causes 
the twitch tension to double.64 The increase in twitch tension 
with faster pacing is termed force–frequency response.

Human EHT preparations reach peak tension ranging 
from 0.5711 to 11.8 mN/mm210 Properties of twitch kinetics can 
only be sparsely compared to those of the adult humans due to 
different metrics used in most cases, but Turnbull et al report a 

TTP of 90 ms, which is substantially faster than reported for 
adult myocardium.11 Relaxation kinetics were reported in the 
same study using an RT90 value that, on average, was 118 ms. 
We could not locate this exact metric for human adult myocar-
dium, but Wiegerinck et al report a value of 400 ms for RT90 in 
human neonatal myocardial preparations.66 In terms of the 
force–frequency response, all of the stem cell-derived cardiac tis-
sues show no change or even a reduction in peak twitch tension 
over frequency changes that elicit drastic increases in tension 
when applied to adult human myocardium.8,10,11 A flat or nega-
tive force–frequency response is associated with failing or imma-
ture/newborn human heart tissue in multiple studies.64,66,67

One additional aspect of contractile function commonly 
tested is the length–tension relationship (Frank–Starling 
response). In these tests, a specimen is stretched to a particu-
lar length and its peak twitch tension recorded. Repeating this 
measurement at different muscle lengths in adult myocardium 
gives the classic Frank–Starling relationship, that is, the peak 
contractile tension increases with increasing muscle length 
until reaching a saturation point. We found that a posi-
tive length–tension relationship was the only physiological 
response unanimously reproduced by human EHTs.10,11,16

Although the conditions for comparison are not ideal, we 
feel it is safe to conclude that none of the human EHTs char-
acterized to date recapitulates all aspects of reported human 
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adult myocardial twitch behavior. While it is tempting to 
classify hESC/hiPSC-CMs as having immature or fetal 
behavior, the obvious diversity in twitch kinetics among 
published studies (Fig.  1C–E) prohibits a simplistic inter-
pretation. Going forward, it seems that the field must give 
specific attention to the different facets of contractile matura-
tion, both to measure them and to identify their molecular 
underpinnings. The latter requires a detailed understanding of 
myofilament protein isoform expression.

Protein Isoforms of the Contractile Apparatus
Activation of the contractile apparatus is the end point 

of a process known as excitation–contraction coupling (EC 
coupling). The initial event in EC coupling is depolarization 
of the cell membrane, which leads to an influx in Ca2+ ions 
through voltage-dependent Ca2+ channels. This inward Ca2+ 
current triggers the release of Ca2+ ions from the sarcoplas-
mic reticulum. For an in-depth discussion of EC coupling, 
see reviews by Bers48 or Satin et al. in this supplement. Once 
released, intracellular Ca2+ binds to troponin C of the myo-
filament, triggering contraction of the sarcomere.

Sarcomeres are the repeating structures that com-
prise the contractile apparatus within cardiomyocytes (Fig. 2). 
Sarcomeres start and end with dense protein aggregations 
known as Z-disk, which anchor each sarcomere’s hexago-
nal lattice of actin thin filaments. The thick filaments of the 
sarcomere, composed primarily of the motor protein myosin, 
interdigitate with thin filaments to allow actin–myosin cross-
bridge formation. Thin and thick filaments together contain 
the necessary molecular machinery to produce and regulate 

contractile force, and are often collectively referred to as the 
myofilament system.

Many of the myofilaments’ constituent proteins exist 
as distinct isoforms, arising either from distinct genes or 
alternatively spliced transcripts. In the following subsections, 
we consider myofilament proteins that experience substan-
tial shifts in isoform expression during development (Fig. 3). 
For each, we examine these shifts in the context of their 
role in modulating myofilament function and cardiac twitch 
dynamics.

Myosin heavy chain. Myosin, the protein that couples 
ATPase activity with mechanical work, is expressed in two myo-
sin heavy chain (MHC) isoforms, α and β. These two isoforms 
have 93% of their amino acid sequence in common and are func-
tionally similar in general terms.68 α- and β-MHCs are encoded 
by two distinct genes MYH6 and MYH7, respectively.69

The expression of cardiac MHC isoforms changes dur-
ing development in a species-dependent manner. The ratio of 
α- to β-MHC expression is also responsive to perturbations in 
the environment in the form of cardiovascular stress or certain 
hormones.70,71 In rodent hearts, both genes are co-expressed  
in the ventricle at birth, with the β expression being dominant.72 
During fetal development, β-MHC transcription decreases 
and is replaced by α-MHC,72,73 which ultimately leads to 
an adult ventricular myocardium that expresses mostly the α 
isoform (∼90%).74 Rodents experience a postnatal surge in thy-
roid hormone, which is known to induce a switch from β- to 
α-MHC.72,75 Addition of T3 into culture media is now a tool 
used to promote the developmental switch in tissue-cultured 
cardiomyocytes.55,76,77

Sarcomere

A-Band
Titin

Thin filaments

Thick filaments
M-lineZ-disk

cMyBP-C

Tm

Tnl

TnT
TnC Ca2+ binding site

Actin

MHC

MLC1

MLC2

Figure 2. Schematic of the sarcomere and its constituent proteins. Adapted from: Campbell SG, McCulloch AD. Multi-scale computational models of 
familial hypertrophic cardiomyopathy: genotype to phenotype. J R Soc Interface. 2011;8:1550–1561. 
Abbreviations: cMyBPC, cardiac myosin binding protein C; Tm, tropomyosin; TnT, troponin T; TnI, troponin I; TnC, troponin C; MHC, myosin heavy chain; 
MLC 1/2, myosin light chain 1/2.
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The atria both rodents and humans mainly express the α 
isoform (90%–100% of α-MHC in human), which remains 
constant under normal conditions.78 In heart failure, the 
expression decreases to 50%–55%.78–80 Nonfailing adult human 
ventricular myocardium expresses mainly β-MHC with a 
low (0%–15%) but detectable α-MHC content.81,82 Reiser 
et al. found that fetal ventricular tissue at gestational week 12 
already expressed the adult level of α-MHC.78 The amount of 
α-MHC in samples from patients with heart failure or hyper-
trophy was reduced further to 0%–4%.75,78,80,83,84 These small 
shifts can have a profound influence on contractile function, 
underscoring their role in cardiac development and the cardiac 
response to different hemodynamic perturbations.85–87

The MHC isoforms are known to have different ATPase 
activities, actin sliding velocities, and power output.80 More 
specifically, α-MHC, the faster of the two, has several-fold 
higher myofibrillar actomyosin-activated ATPase activity. 
This means that this isoform sacrifices economy of tension 
for the ability to contract at greater speed.67 It was also found 
that myocytes expressing α-MHC are able to develop higher 
twitch tensions and a significantly higher power output.85,86 

The relationship between power output and α-MHC content 
has been found to be linear in rat skinned myocytes.88 Finally, 
α-MHC exhibits a higher sarcomere length dependence of 
the absolute loaded shortening velocity and power output.87 
On the other hand, the lower velocity of β-MHC allows it to 
be more energy efficient, potentially making it physiologically 
favorable in larger mammals such as humans.

MHC isoform expression is not only of interest due to 
functional differences but also because they interact differently 
with other sarcomeric proteins. In the case of cardiac myosin 
binding protein C (cMyBP-C), its PKA-mediated phosphory-
lation increases ATPase activity of α-MHC but not β-MHC 
systems.89 Furthermore, Mamidi et al. have shown that α- and 
β-MHC have different effects on how cardiac contractility 
dynamics get regulated by cTnT.90 It is therefore of importance 
to know the relative isoform expressions of MHC when mod-
eling cardiac diseases using stem cell-derived cardiomyocytes. 
Especially in the case of HCM, a “disease of the sarcomere,”91 
this can be significant. The arginine to glutamine mutation 
at amino acid 403 (termed R403Q ) is a missense mutation 
in MHC that is known to cause familial HCM. Lowey 
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Figure 3. Adapted diagram from Marston111 illustrating the changes in isoform composition of the thick and thin filament during development (fetal to adult) 
in rodent (red) and human (blue) left ventricular tissue. Relevant sources are cited in the text.
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et al.92 applied the same mutation to an α- as well as β-MHC 
backbone and found opposing functional consequences. The 
R403Q mutation in an α-backbone showed faster actin fila-
ment velocity as well as increased actin-activated ATPase 
activity, whereas the same mutation in a β-backbone showed 
decreased actin filament velocity and actin-activated ATPase 
activity.

Mutations in cTnT at residue R92 had different effects 
depending on the presence of α- and β-MHC. Only in the 
presence of β-MHC was there a significant decrease in the 
Frank–Starling response and increase in the responsiveness 
of cardiac myofilaments to Ca2+ ions at a longer sarcomere 
length.93 Furthermore, rates of crossbridge cycling were faster 
in a β-MHC background but unaffected on a background of 
α-MHC. It is therefore of great importance to quantify the 
presence of isoforms to account for functional differences due 
to immature isoform expressions when investigating func-
tional impacts of cardiac diseases.

Determining the ratio of MHC isoforms in cultured 
hESC/hiPSC-CMs and EHTs seeded with such cells has 
so far been limited to the probing of relative MYH6 and 
MYH7 transcript abundance.10,11,15,55,56,94 With their car-
diac patch, Zhang et al.10 achieved a β-MHC/α-MHC ratio  
of about 3:5  in comparison to an approximate ratio of 9:1  in 
adult human tissue.80–82 Their construct hence expresses pre-
dominantly the fast MHC isoform. Turnbull et al. express an 
even lower β-MHC:α-MHC ratio, which might explain why 
their twitch kinetics are faster than observed in adult human 
tissue.11 Increasing culture period might be one possible way of 
encouraging a more complete switch from α-MHC to β-MHC. 
Culturing iPSC- and hESC-derived cardiomyocytes for about 
80–120 days led to expression levels of both MHC isoforms 
that almost matched adult left ventricular tissue, and coincided 
with a significant slowing of contraction kinetics.56

However, results based on transcript abundance must be 
interpreted with caution, since MHC transcripts and expressed 
proteins do not always correlate. Human ventricles that have 
undergone pathological hypertrophy show an increase in gene 
expression for β-MHC and decrease in α-MHC, while on 
the protein level β-MHC remains constant and only α-MHC 
decreases.71,78,95 Efforts should be made to estimate the actual 
MHC protein isoform ratios in EHTs using silver-stained 
SDS-polyacrylamide gels.96

Myosin regulatory light chain. Ventricular myosin regu-
latory light chain (MLC2v, human gene MYL2) is a subunit of 
the myosin hexamer, associating with the lever arm domain of 
myosin heavy chain.97 In smooth muscle, regulatory light chain 
is the end target of signaling cascades that switch contraction 
on or off, but in striated muscle this protein plays a modulatory 
and non-absolute regulatory role.98 Another isoform, MLC2a 
(human gene MYL7), can also be expressed in striated muscle 
early in development, but in adults its expression is limited 
to the atria.99 Functional studies of rat atrial cardiomyocytes 
that are forced to express MLC2v indicate that the ventricular 

isoform enhances contractile strength and sensitivity of the 
myofilaments to Ca2+.100 Apparently, MLC isoform expres-
sion exerts meaningful physiological effects on contraction, 
and hence specific attention to its exact composition in iPSC-
CMs seems warranted.

During development of the rodent heart, solo expression 
of either MLC2v or MLC2a delineates ventricular and atrial 
anatomy.101 Accordingly, MLC2v has been successfully tar-
geted as a means for enriching populations of iPSC-CMs for 
ventricular phenotypes. Bizy et al. used viral transfection of 
iPSC-CMs with the green fluorescent protein (GFP) driven by 
MLC2v-specific promoter to isolate a subpopulation of cells, 
which ultimately exhibited longer action potential durations 
than cells sorted using an MLC2a promoter.102 Although this 
concept has never been directly tested, these studies suggest 
that the expression of ventricular light chain over the atrial 
isoform occurs early in development and is strongly associated 
with a ventricular action potential morphology. Hence, cur-
rent techniques aimed at enhancing ventricular cardiomyo-
cyte differentiation (most commonly characterized by action 
potential morphology) seem likely to simultaneously select 
cells that express MLC2v.

MLC2v contains phosphorylatable serine residues tar-
geted by myosin light chain kinase (MLK). Phosphoryla-
tion of MLC2v increases the step size of myosin,103 which 
ultimately increases the contraction force and duration of 
the cardiac twitch.104 Work conducted in rat cardiac muscle 
suggests that MLC2v phosphorylation is a key component 
of the positive force–frequency relationship.105 It is interest-
ing to note that the force–frequency relation in EHTs has 
been reported as being flat or negative in published work 
to date.10,11 The pathway responsible for mediating the fre-
quency-dependent phosphorylation of MLC2v may there-
fore be absent or otherwise deficient in neonatal cardiac 
cells and hiPSC-CMs. Verifying that cardiac MLK106,107 is 
expressed in hiPSC-CMs would be an important initial step 
in this process.

Troponin T. TnT binds to tropomyosin as well as the 
other troponin subunits, effectively anchoring the troponin 
complex to the thin filament and buttressing end-to-end over-
lap of adjacent tropomyosin molecules.108 Cardiac troponin 
T (cTnT) is expressed as several different isoforms that arise 
from alternative splicing of the TNNT2 gene. Rats show 
co-expression of cTnT2 and cTnT4 at birth, with cTnT2 get-
ting entirely replaced by cTnT4 during development.109,110 In 
humans, the isoforms cTnT1 and cTnT3 are both expressed in 
the fetal heart, but the cTnT3 isoform predominates expression 
in the adult myocardium (Fig.  3).111 Evidence suggests that 
TnT isoforms are capable of modulating cardiac contraction 
to some degree. For instance, Nassar et al. examined the Ca2+ 
sensitivity of force in ventricular myocardium from neonatal 
rabbits and found that sensitivity increased with greater 
expression of the fetal TnT isoform.112 Although the precise 
impact of fetal TnT expression on cardiac twitch dynamics 
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has not been specifically examined, enhanced Ca2+ sensitivity 
would tend to cause slower relaxation in the intact heart.

Troponin I. Troponin I (TnI) gets its name from its 
ability to inhibit myosin ATPase activity in vitro.113 TnI 
exerts its regulatory activity through interactions with actin 
and troponin C (TnC). The inhibitory region of the protein 
binds to actin under low-Ca2+ conditions, preventing move-
ment of tropomyosin to expose myosin binding sites on actin. 
The N-terminal domain of TnC binds the switch region of 
TnI in the presence of Ca2+, and this event facilitates disso-
ciation of the inhibitory region from actin (reviewed in detail 
elsewhere).114,115

Slow skeletal TnI (ssTnI, human gene TNNI1) is 
expressed in the fetal heart, but expression switches entirely to 
the cardiac isoform (cTnI, human gene TNNI3) in the months 
following birth (Fig. 3).110,116 This isoform switch is of great 
physiological significance, because of an N-terminal extension 
present in cTnI (N-cTnI). Under normal conditions, N-cTnI 
interacts with TnC to stabilize Ca2+ binding, but phospho-
rylation of N-cTnI at two serine residues by protein kinase A  
appears to reduce N-cTnI/TnC interactions and subse-
quently Ca2+ binding affinity of the myofilaments.117 Hence, 
cTnI allows the Ca2+ responsiveness of the myofilaments 
to be tuned through adrenergic signaling118 and indirectly 
through the heart rate.105 Transgenic expression of ssTnI 
in mouse hearts resulted in altered twitch characteristics, 
including slower relaxation and an absence of accelerated 
relaxation following treatment with isoprenaline.118 TnI 
has also been shown to contribute to the length dependence 
of myofilament contractile force in an isoform-dependent 
manner.119,120

These studies of TnI isoform effects suggest that mea-
surements of twitch dynamics in artificially differentiated 
iPSC-CMs under adrenergic stimulation and at various 
pacing frequencies are important metrics of functional 
maturation. Initial attempts to characterize the cTnI to 
ssTnI protein isoform ratio in iPSC-CM showed a fetal 
TNNI1 signature even under long-term culture with only 
limited amounts of cTnI protein even after 9.5  months of 
culture.121

Titin. Titin (TTN) is a long, spring-like protein that 
runs from the z-disk to the m-line in sarcomeres. TTN plays 
essential roles in sarcomere formation, passive cardiomyocyte 
stiffness, mechanical signaling, and active muscle contrac-
tion.122 When expressed, the titin gene is alternatively spliced 
to form shorter (N2B) or longer (N2BA) isoforms, and these 
are developmentally regulated. The longer and more compli-
ant N2BA isoform predominates fetal expression but quickly 
declines in favor of the stiffer N2B isoform immediately 
after birth (Fig. 3),123–125 leading to a passive resting tension 
increase.126 The ratio of N2BA to N2B protein expression in 
adult human left ventricular tissue is around 0.5.127

TTN isoform switching has not been directly exam-
ined in human ESC- or iPSC-derived myocardium, but work 

with neonatal rat cardiomyocyte cultures suggests that the 
expression of N2B increases with time in culture.128 Further-
more, transition from fetal to mature TTN is promoted by 
thyroid hormone128 and insulin.129 While TTN is perhaps 
most often thought of in its role as a determinant of passive 
myocardial stiffness, evidence suggests that it is also a key 
component of length-dependent activation.130 Fukuda et al.130 
reported that myocardium expressing the adult (N2B) TTN 
isoform was more sensitive to length than that expressing pri-
marily N2BA TTN. Hence, incomplete transition from N2BA 
to N2B TTN isoform expression could manifest functionally  
as a blunted Frank–Starling response in stem cell-derived 
cardiomyocytes.

Computational Modeling to Analyze Cardiomyocyte 
Maturation
Both the approaches for gauging contractile maturation dis-
cussed here have important benefits and limitations. Twitch 
kinetics can describe the overall character of a complex gene 
expression milieu with just a few functional measurements. 
This approach also keeps the focus on reproducing physi-
ological function, which, it could be argued, is a more prac-
tical objective than precise recapitulation of the entire adult 
myofilament expression profile. On the other hand, when 
twitches do not exhibit mature phenotypes (Fig.  1C–E), 
pinpointing the underlying molecular cause is difficult. 
The effects of a given protein isoform shift or post-transla-
tional modification are not necessarily confined to a single 
functional attribute such as relaxation rate. For instance, 
β-adrenergic responsiveness, the force–frequency relation-
ship, twitch relaxation, and other contractile properties can 
all be affected by TnI isoform expression (see Solaro et al for 
review131).

Assessing hESC/hiPSC-CM maturation using myofila-
ment gene and protein expression data is perhaps underutilized 
and would certainly lend great insight into the remaining defi-
cits in maturation. However, a comprehensive study of expres-
sion under each of the many differentiation and maturation 
protocols now in use is probably unrealistic given the scale of 
such an undertaking.

Another major complicating factor is that the intracel-
lular Ca2+ transients driving muscle contraction also show 
maturation deficits in ESC/iPSC-derived cardiomyocytes (see 
the review by Satin et al in this supplement). Without some 
form of quantitative analysis, it is difficult to know whether 
immature twitch behavior is due to an abnormal input signal 
(Ca2+ transient), expression of fetal myofilament isoforms, or a 
combination of the two.

In our own work, we have developed computational 
tools to predict the isometric twitch time course in response 
to a Ca2+ transient input (Fig. 4B). Model parameters reflect 
the biophysical and biochemical properties of myofilament 
proteins, which can include the effects of different protein 
isoforms132 and post-translational modifications such as phos-
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phorylation.104,133 In this way, we can account quantitatively 
for twitch modifications, separating Ca2+ transient effects 
from those originating in the myofilaments.

The utility of this approach may be seen in our recent 
study comparing adult cardiomyocytes isolated from 
wild-type and Pkd2-deficient (Pkd2+/–) mouse strains.133 
Simultaneous recordings of Ca2+ transients and unloaded 
sarcomere shortening in these cells revealed a significant 
increase in the magnitude and duration of the intracel-
lular Ca2+ transient in Pkd2+/− cells compared with wild 
type, but no difference in their twitch dynamics. Although 
these data directly indicate the existence of some diffe
rences in the myofilament composition between wild-type 
and Pkd2+/– cells, they do not reveal their identity. Using 
the model, we first determined a parameter set that would 
reproduce the wild-type twitch profile in response to an 
average wild-type Ca2+ transient (Fig.  4A and B). Keep-
ing this parameter set, we switch the input signal to that 
of an average Pkd2+/– Ca2+ transient. As expected, this 
yielded a simulated twitch response that differed sub-
stantially from wild type. Given that no such twitch diffe
rences were observed experimentally, the conclusion that 
the myofilaments themselves must be altered was further 
reinforced. Numerical experiments allowed us to seek the 
identity of this myofilament alteration. We found that 

assuming a lower Ca2+ affinity of the troponin complex in 
Pkd2+/– cardiomyocytes caused the twitch dynamics to be 
identical in the two strains (Fig. 4C). The well-known rela-
tionship between troponin Ca2+ affinity and cTnI phospho-
rylation at serine residues 22/23 led us to suspect elevated 
cTnI phosphorylation in Pkd2+/– hearts.134,135 Western blots 
subsequently confirmed this hypothesis (Fig. 4D).

Given the complex interplay between myofilament 
protein isoforms, phosphorylation sites, and the Ca2+ tran-
sient in determining twitch dynamics, we consider the use 
of computational analysis to be an important emerging 
tool in evaluating in vitro maturation of cardiac cells and 
in determining specific gene-level deficiencies in competing 
approaches.

Markers of maturation

1.	 Functional markers of maturation
•	 Maximum peak tension
•	 Positive force-frequency behavior
•	 Decreasing twitch duration and kinetics (RT 50 and TTP) with 

increasing pacing frequency
•	 Frank-starling behavior

2.	Biomolecular markers of maturation
•	 β-MHC content 95% of total MHC
•	 100% expression of cardiac TnI isoform
•	 Dominant expression of cardiac TnT splice variant 3
•	 Titin isoforms N2BA and N2B are expressed 1:1
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Figure 4. An example of using a biophysically detailed computational model to identify molecular mechanisms of altered twitch dynamics. (A) Cells from 
Pkd2+/− mice showed different Ca2+ transients but indistinguishable sarcomere contraction. (B) The model demonstrates an altered Ca2+ transient should 
have produced an altered contraction. (C) Reproducing experimental results required the assumption of Ca2+ affinity loss – suggesting elevated TnI 
phosphorylation in Pkd2+/−, which we verified (D). Reproduced from Kuo et al.133 with permission. © the National Academy of Sciences.
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Recommendations for Twitch Phenotyping to Assess 
Functional Myocardial Maturation
In our view, the challenge of measuring and enhancing myo-
filament maturation in hESC/hiPSC-CMs could be greatly 
improved by the adoption of some basic standards. In par-
ticular, twitch phenotyping should be done in a uniform and 
consistent manner (Summarized in Table 1). To facilitate com-
parison, experimental conditions and analysis metrics should 
be chosen to match existing human data. Muscles should be 
tested in 37  ˚C tyrodes solution containing 1.8 mM CaCl2. 
Pacing rates should be selected to include at a minimum the 
three rates used in the most comprehensive data sets, namely 
0.5, 1, and 2.5 Hz.64,65,136

When determining which scalar properties to use in 
describing twitch characteristics, it is certainly desirable to 
compute the peak twitch tension, but twitch kinetic para
meters such as TTP and relaxation rates contain a wealth of 
important information. An important opportunity can also be 
missed when twitch kinetics are not analyzed as a function of 
pacing frequency. This is due to the fact that mature myocar-
dium achieves steady-state force production upon changes in 
stimulation frequency in two stages: a rapid phase, characte
rized by immediate changes in twitch force and Ca2+ tran-
sient amplitude; and a delayed phase in which force changes 
independently of the Ca2+ signal.137 Interestingly, in the 
second/late phase, twitch timing kinetics (such as relaxation 
and TTP) achieve steady-state values before peak tension 
itself.137 The subtlety inherent in these different phases is not 
currently detected in typical EHT test protocols. We there-
fore recommend that twitch relaxation rates as well as peak 
tension be examined in a time-resolved fashion when testing 
the force–frequency relationship in human EHT prepara-
tions. These same quantities ought to be examined during the 
response of EHTs to adrenergic stimulation, since decreased 
TTP and RT50 are commonly observed in a healthy adult 

myocardium.64,136 Conversely, a negative force–frequency 
response and decreasing rise and decline rates are usually asso-
ciated with failing myocardium64,138 and immature neonatal 
tissue.66

Improved quantification and standardization would also 
make measurements of the Frank–Starling response much 
more meaningful in EHT studies. There is good reason to 
believe that length-dependent activation should increase with 
maturation, owing to the transition from slow skeletal TnI 
to cardiac TnI. In order to detect such an effect, it would be 
necessary to compute the normalized Frank–Starling gain: 
the change in active tension between the two muscle lengths 
divided by the passive tension change.139 A negative Frank–
Starling response would likely indicate immature cells, and is 
also observed in failing myocardium.138

Finally, harnessing the power of computational mod-
eling to perform mechanistic analyses of twitch dynamics 
requires the measurement of calcium transients. Stoehr et al 
have recently illustrated the ability of an automated system to 
measure calcium transients using the ratiometric fluorescent 
dye Fura−2.8

Conclusions
Even though the field has made great progress in produc-
ing human stem cell-derived myocardium, the available 
data suggest that the goal of physiologically mature tissue 
has yet to be attained. Furthermore, the standards by which 
we assess maturity are still evolving and will require careful 
thought. The required markers needed to assess the matura-
tion stage of iPSC-CMs are still a topic of debate in the stem 
cells field. This is highlighted by the fact that isolated adult 
cardiomyocytes start reexpressing fetal protein isoforms 
when cultured in vitro.140 Furthermore, external stresses can 
alter physiological markers such as calcium handling, beat-
ing patterns, and cell morphology sometimes used to assess 
maturity.121 Hence, a mix of quantitative molecular and 
functional markers next to the usually used structural mark-
ers is needed (See box on page 9). In light of these facts, we 
feel that caution is required when interpreting disease mod-
els that are based on hESC/hiPSC-CMs. Understanding 
the influence of individual sarcomeric protein isoforms on 
muscle function should figure prominently in such analyses, 
especially when the disease in question involves a sarcomeric 
mutation.

As of now, only a few protein isoform expression pro-
files have been assessed in hESC/hiPSC-CMs. Studies 
of cardiac development suggest that isoform profiles are 
powerful markers of myocardial maturation, and may rep-
resent an untapped resource. Given the work that remains 
before mature stem cell-derived myocardium can be pro-
duced, we strongly endorse routine measurement of these 
critical myocellular components. At the same time, twitch 
characteristics of engineered myocardial preparations 
can provide valuable insights into functional maturity, 

Table 1. Recommendations for twitch phenotyping. Reference 
values are taken from Muliero et al. and Rossmann et al.64,136

External Conditions

•	T witch measurement in Tyrode’s Solution with 1.8 mM CaCl2 

•	 Bath temperature of 37 C

•	 Pacing frequencies of 0.5, 1 and 2.5 Hz

Frequency dependent Functional Assessment

Measurements Published references values

0.5 Hz 1 Hz 2.5 Hz

PT (mN/mm2) 16.7 20 30.3

TTP (ms) 235 190 151

RT50 (ms) 153 120 98

Frequency independent Functional Assessment

•	 Frank- starling response from 0 to 10 % strain

•	 Calcium transient measurements using ratio-metric dyes
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especially when protocols and analysis methods are care-
fully selected. Finally, in cases where maturation is shown 
to be incomplete, either through functional or biochemi-
cal means, computational analysis can be used to elucidate 
potential molecular-level remedies.

Even though this commentary has focused on some of 
the shortcomings of human EHTs as a platform for disease 
modeling, we feel that these limitations can be satisfactorily 
addressed in the short term through properly selected con-
trols and computational analysis. Furthermore, we are opti-
mistic that in the long run maturation in these systems will be 
improved such that the bulk of adult myocardial phenotypes 
are reproduced.
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