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Introduction
Heart failure (HF) is a progressive, essentially irreversible 
disease in which the capacity of the heart to provide ade-
quate blood supply is compromised. Along with its associ-
ated pathologies, heart failure contributes substantially to the 
cost of healthcare and the cost worldwide is rising rapidly.1 
The failing myocardium exhibits a range of pathologies, all of 
which need to be therapeutically targeted for the successful 
management of the condition. Treatment regimens commonly 
include angiotensin converting enzyme (ACE) inhibitors and 
β-adrenergic receptor blockers, and may incorporate an ino-
tropic agent to enhance end organ perfusion.2,3 In patients 
with impaired systolic function, inotropic agents provide 
an improvement in cardiac performance, but this is often at 
a cost of increased myocardial oxygen consumption, poten-
tially increasing the likelihood of ischemia and arrhythmia.4 
New types of inotropic agents are clearly needed. The fail-
ing myocardium exhibits a number of changes that contrib-
ute to contractile dysfunction. Included among these are loss 
of functional myocytes5 and extracellular matrix deposition6; 
but in addition to these structural changes, there are signal-
ing changes within the myocytes themselves, which contrib-
ute to contractile dysfunction. These intracellular changes 
provide potential start points for developing novel therapeu-
tic strategies. The overarching idea is that, by reversing the 

intracellular changes that accompany the transition to HF, it 
may be possible to provide well-tolerated improvements in the 
pump performance. In general, these would be used in com-
bination with agents that target other aspects of the complex 
disease of HF.

Sarcoplasmic Reticulum Ca2+ as a Target for 
Inotropic Therapy
The regulation of cardiac contractile function is orchestrated 
primarily by the sarcoplasmic reticulum (SR), which provides 
the Ca2+ ions to initiate and sustain contraction of the myo-
cyte. The cardiac contraction cycle is initiated by Ca2+ entry 
via voltage-regulated Ca2+ channels in the sarcolemma, which 
provide the trigger Ca2+ to activate ryanodine receptors on the 
SR, resulting in release of sufficient Ca2+ from the SR into the 
cytosol to initiate contraction during systole.7 Ca2+ is subse-
quently pumped back into the SR by the sarco-endoplasmic 
reticulum ATPase (SERCA)2a, the activity of which is closely 
regulated by the phosphorylation status of phospholamban 
(PLN). PLN is an inhibitor of SERCA2a in the dephosphory-
lated state, and this inhibition is relieved by phosphorylation.8 
PLN is phosphorylated, most importantly, by protein kinase A 
(PKA) on S16 following activation of β-adrenergic receptors, 
and its phosphorylation results in heightened SERCA func-
tion, accelerated relaxation, and increased SR Ca2+ content.
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The Ca2+ content of the SR is typically lowered in failing 
myocytes,9 and this is associated with reduced expression of 
SERCA2a,10 along with changes in the expression or activity 
of upstream factors that regulate the phosphorylation status 
of PLN. PLN is typically dephosphorylated at S16 in HF,11 
contributing to further lowered SERCA activity (Fig. 1). In 
addition to the positive regulation by PKA, S16 phosphory-
lation of PLN is negatively regulated by protein kinase Cα 
(PKCα)12 downstream of phospholipase Cβ1b (PLCβ1b). 
The expression and activity of both PKCα13 and PLCβ1b14 
have been shown to be heightened in HF. Thus all of these 
factors are appropriate start points for the development new 
therapeutics.

SeRCA2A
The expression of SERCA2a both at the mRNA and protein 
levels is depressed in most HF models independently of the eti-
ology (Fig. 1).11,15 Similarly, lowered SERCA2a expression is 
a common feature of human HF.11 For this reason, SERCA2a 
has been a focal point for the development of an improved 
range of inotropic drugs. Pharmaceutical agents, such as the 
Na+/K+ ATPase inhibitor istaroxime, that increase SERCA 
activity have been tested with some positive outcomes in 
experimental and clinical studies,16 but such agents have other 
actions that may present problems. Another approach is to 
reverse the lowered SERCA expression level directly by gene 
therapy, and considerable effort has been made in this regard. 
Virally mediated expression of SERCA2a in cardiomyocytes 
increased the amplitude of the Ca2+ transients, accelerated 
relaxation kinetics, and reduced diastolic Ca2+.17 Subsequent 
studies used adenoviral constructs to deliver SERCA2a to 
hearts of rats that had been subjected to pressure overload. 
Restoration of the SERCA2a levels resulted in improved 

contractile performance along with substantially reduced 
mortality.18 Adenovirus presents difficulties in delivery to 
hearts in vivo and also instigates an immune response. For 
these reasons, recombinant adeno-associated viruses (rAAVs) 
have become the tool of choice for gene therapy to the myocar-
dium, and delivery of SERCA2a has been foremost in these 
studies. The advantages of rAAV and the relative benefits of 
the different serotypes are discussed in detail elsewhere.19 The 
development of rAAV vectors led to their use in large animal 
models of pacing-induced HF in sheep,20,21 where delivery of 
the SERCA2a gene resulted in substantial improvements in 
contractile function along with decreased mortality. Signifi-
cantly, translation into clinical studies has been initiated with 
encouraging results from completed Phase I and II clinical tri-
als [calcium upregulation by percutaneous administration of 
gene therapy in cardiac disease (CUPID)22 and CUPID2].23 
These studies not only provided data supporting the useful-
ness of rAAV as a clinical tool but also showed that increasing 
SERCA2a had beneficial outcomes in the clinical situation.

Phospholamban expression
In addition to its expression level, SERCA2a activity is 
dependent on the expression level and phosphorylation sta-
tus of PLN (Fig. 1). However, attempts to improve contractile 
performance by manipulating PLN expression have generally 
met with less success than studies targeting SERCA2a. As 
expected, knockout of the PLN gene results in increased SR 
Ca2+ content and improved Ca2+ and contractile responses. 
Accordingly, knockout of PLN improved outcomes in a 
mouse model where calsequestrin was overexpressed, depress-
ing available SR Ca2+.24 However, in mice overexpressing 
CaMKIIδc in heart and displaying features of SR Ca2+ leak 
and associated arrhythmogenesis, deletion of PLN severely 
worsened phenotype by increasing Ca2+ leak and facilitating 
cardiomyocyte death following mitochondrial Ca2+ overload.25 
Given that heightened CaMKIIδ expression and activity are 
common features of failing myocardium,26 removing PLN 
does not appear to be a useful approach. It is possible that 
more modest lowering of PLN expression levels might have 
provided better protection.

Phospholamban Phosphorylation
As noted above, PLN is an inhibitor of SERCA in the dephos-
phorylated state, and therefore increasing the phosphorylation 
of PLN at S16 dysinhibits SERCA, increases SR Ca2+ con-
tent, and improves contractility.8 PLN is phosphorylated at 
S16 primarily by PKA downstream of β-adrenergic receptor 
activation.27 PLN is dephosphorylated principally by protein 
phosphatase-1 (PP-1), and PKA further regulates the phos-
phorylation status of PLN by phosphorylating a PP-1 inhibi-
tor known as inhibitor-1 (I-1) at T35, thereby increasing its 
inhibitory function (Fig. 2). A number of currently used ino-
tropic drugs act by increasing cAMP levels and thereby acti-
vating PKA, leading to increased PLN S16 phosphorylation by 
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Figure 1. diagram showing the changes in s16 phosphorylation status of 
pln in healthy heart under basal conditions, stimulated conditions, and in 
heart failure. a positive inotropic stimulus increases phosphorylation and 
dysinhibits serCa2a. in failing cardiomyocytes, serCa2a expression is 
depressed and pln is dephosphorylated on s16. this results in lowered 
sr Ca2+ content.
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these direct and indirect mechanisms. Included among these 
are β-adrenergic agonists, such as dobutamine, and cAMP 
phosphodiesterase inhibitors such as milrinone.4 The down-
side of this approach is that PKA has other targets, some of 
which increase the energy demands on the heart and thereby 
promote ischemia,28 a very undesirable side effect. For this 
reason, other approaches to increase PLN phosphorylation 
may be preferable.

PkCα. An alternative approach to improve contractility 
by increasing the phosphorylation of PLN at S16 is to suppress 
inhibitory pathways. To date, this has been achieved by inhib-
iting PKCα. PKCα is a conventional PKC subtype, meaning 
that it requires both Ca2+ and sn-1,2-diacylglycerol (DAG) for 
activation, and it is the most highly expressed PKC subtype in 
rodent heart.29 Cardiac PKCα activation results in contractile 
dysfunction associated with dephosphorylation of PLN and 
SR Ca2+ depletion.12 The mechanisms of this response have 
been elucidated and are shown in Figure 2. Essentially, PKCα 
phosphorylation of I-1 at S67 and or T75 opposes the action of 
PKA phosphorylation at T35.30 Whereas PKA phosphorylation 
increases the inhibition of PP1 by I-1, PKCα phosphorylation 
of I-1 increases PP-1 activity, resulting in PLN dephosphory-
lation. PKCα thus acts to oppose β-adrenergic responses at 
the level of PLN. The obvious advantage of PKCα as a tar-
get over PKA is that PKCα activity is being inhibited rather 
than activated, and unwanted effects on energy metabolism 
are unlikely. Based on these considerations, PKCα inhibitors 
have been studied with a view to developing new inotropic 
therapies.31

Overall, PKCα has been targeted by two different 
approaches. First, inhibitors of conventional PKC subtypes, 
with some specificity for PKCα, have been used with con-
siderable success.13,31,32 PKCα inhibitors prevented the loss 
of contractility in mouse hearts following pressure overload 
and increased survival, without altering the hypertrophic 
response.33 Importantly, chronic treatment with the PKCα 

inhibitor ruboxistaurin improved survival in pigs following 
myocardial infarction (MI).31 Ruboxistaurin is currently 
under development as a treatment for diabetic retinopathy. 
The other approach to targeting PKCα pathways to improve 
contractile function has involved the development of a mini-
gene activator of PP-1 based on I−1. This construct comprises 
the N-terminal sequence of I-1 (1–65, I-1c), lacking the PKCα 
phosphorylation sites and thus unable to function as a PP-1 
activator. Instead, this construct inhibits PP-1 unopposed and 
thereby increases SERCA activity, SR Ca2+ content, and con-
tractile function. Studies in a post-MI model in pigs provided 
evidence for substantial improvement in functional parameters 
and survival following rAAV9-mediated expression of I-1c.34 
However, other investigations using a mouse model where I-1c 
was expressed in hearts of I-1–/– mice showed initial improve-
ments, but with aging the mice developed a cardiomyopathic 
phenotype associated with hyperphosphorylation of PLN and 
the ryanodine receptor, Ca2+ sparks, and ventricular tachycar-
dia.35 There were two major differences between these studies 
that might explain the divergent outcomes. First, the studies 
using the mouse model were carried out over a much longer 
time frame than the studies of the post-MI model in pigs, 
suggesting that chronic treatment with I-1c might be dele-
terious. Second, the chronic expression of I-1c in the mouse 
study was on a background of I-1 knockout, and this would 
be expected to intensify the effect of the PP-1 activator. This 
suggests that dosage might be critical for successful use of this 
mini-gene strategy for long-term therapy. A more recent study 
delivered I-1c to pigs via a modified rAAV vector and reported 
considerable improvement in cardiac function post MI, laying 
the basis for potential gene therapy.36

In addition to the two mechanisms described above, 
recent evidence suggests that PKCα can be inhibited by over-
expressing PICOT (PKC-interacting cousin of thioredoxin). 
PICOT has anti-hypertrophic actions and improves contrac-
tile function. Recent studies report that the positive inotro-
pic action of PICOT depends on its ability to inhibit PKCζ, 
resulting in reduced expression of PKCα, increased PLN 
phosphorylation, and heightened SR Ca2+ content.37,38

PLCb1b-Shank3. PKCα is expressed and is active in all 
cell types,39 and therefore the use of PKCα inhibitors may 
be constrained by unwanted actions in other tissues. Another 
approach to maintaining the phosphorylation status of PLN 
is by preventing the activation of PKCα. PKCα is a conven-
tional PKC subtype and therefore requires Ca2+ and DAG 
for activation.40 DAG is generated by PLC enzymes follow-
ing activation of appropriate receptors,41 and therefore a PLC 
subtype or subtypes must be the immediate upstream activa-
tor of PKCα.

PLC enzymes hydrolyze the plasma membrane phospho-
lipid phosphatidylinositol(4,5)bisphosphate (PIP2) to generate 
inositol(1,4,5)trisphosphate (IP3) and DAG.42 IP3 is a regula-
tor of Ca2+,43 and, as noted above, DAG is an activator of con-
ventional and novel PKC family members.39 Cardiomyocytes 

PKA

Inotropy

SERCA

S16

T35 S67/T75

SR Ca2+

Inotropy

SERCA

SR Ca2+

PKCα

PP-1

+−P

P P
I-1I-1

PLN PLN

Figure 2. the regulation of s16 phosphorylation of pln downstream of 
pKa and pKCα. in addition to direct phosphorylation of pln at s16, pKa 
phosphorylates i-1 at t35, depressing the activity of pp-1 and maintaining 
s16 phosphorylation of pln. pKCα phosphorylates i-1 at s67 and t75, 
resulting in increased activity of pp-1 and dephosphorylated pln with 
subsequent lowered contractile function.
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express a number of different PLC subtypes, specifically 
PLCβ1 (of which there are two splice variants PLCβ1a and 
PLCβ1b), PLCβ3, PLCγ1, PLCδ1, and PLCε.14,44 The 
PLCβ family members are activated by Gq and thus by G 
protein coupled receptors (GPCR) including α1-adrenergic 
receptors, angiotensin II receptors (AT1), and endothelin 
receptors.45–47 In addition to activation by Gαq, PLCβ sub-
types require translocation to the plasma membrane for activ-
ity, and for most PLCβ subtypes this is achieved by binding 
of a C-terminal PDZ-interacting domain to the PDZ domain 
of a particular protein scaffold. PLCγ is activated by plasma 
membrane translocation as part of the signaling cascade of 
many growth factor receptors, and this is associated with 
tyrosine phosphorylation and Src homology 2 (SH2) interac-
tions.42 PLCδ subtypes associate with the plasma membrane 
via a high-affinity PH domain specific for PIP2. They do not 
respond to regulatory factors other than Ca2+, and their func-
tional significance remains poorly documented.48 PLCε is a 
multifunctional protein with both PLC and GEF (guanyl 
nucleotide exchange factor) activities.49 Activation of PLCε 
is complex, involving primarily monomeric G proteins of 
the Rho and Ras families, and can be initiated by receptors 
coupled to G12/13. Additionally, PLCε can be activated down-
stream of receptors coupled to Gs and adenylyl cyclase follow-
ing cAMP activation of EPAC (exchange protein activated 
by cAMP), which generates activated Rap.50 The relationship 
between the different classes of PLC expressed in cardiomyo-
cytes is depicted in Figure 3.

PLCβ subtypes are generally believed to be the primary 
effectors of Gq activation in heart,51 and our studies have 
shown that Gq responses in cardiomyocytes are mediated 
solely by an unusual member of the PLCβ family, PLCβ1b.52 
There have been suggestions of a role for PLC in cardio-
myocyte responses to IGF1 (insulin-like growth factor-1),53 
and this would most likely be PLCγ, although this was not 

verified. In our hands, overexpression of PLCγ1 in cardio-
myocytes did not alter responses to either EGF or PDGF.54 
Overexression of PLCδ1 in cardiomyocytes increased PLC 
activity but did not alter cardiomyocyte morphology in any 
obvious way.54,55 Furthermore, knockdown of PLCδ1 did 
not alter overall PLC activity in cardiomyocytes, even under 
conditions of heightened Ca2+.56 The roles of PLCε in heart 
are complex. Both anti-hypertrophic and pro-hypertrophic 
actions have been reported, depending on the developmental 
stage of the heart.44,57,58 In addition to a role in hypertrophic 
responses, PLCε facilitates contractile responses downstream 
of β-adrenergic receptor activation by enhancing systolic Ca2+ 
responses by mechanisms involving CaMKIIδ and PKCε.57

Thus, PKCε is associated with pathways downstream of 
PLCε that increase cardiomyocyte Ca2+ responses and con-
tractile activity. As noted above, PKCα, in marked contrast, 
reduces Ca2+ responses and lowers contractile performance. 
Our studies showed that, in the heart, PKCα was activated 
specifically by PLCβ1b. PLCβ1b expression and activity are 
selectively heightened in diseased myocardium from humans, 
sheep, and mice, and, furthermore, PLC activity correlates 
with disease progression, hinting at a role in the disease pro-
cess.14 This view was subsequently confirmed. Increasing the 
expression of PLCβ1b in mouse hearts resulted in a rapid loss 
of contractile function. In the continued presence of high 
PLCβ1b activity, contractile dysfunction was sustained for 
a period of 36 weeks, without indications of HF.59 PLCβ1b 
expression resulted in lowered S16 phosphorylation of PLN 
and depressed SR Ca2+ content. All of these responses closely 
resemble changes that follow heightened PKCα expression.12 
Importantly, inhibition of PKCα resulted in complete res-
toration of contractile activity in PLCβ1b-expressing mice, 
confirming that PLCβ1b is the upstream activator of PKCα 
in vivo.

PLCβ1b is therefore a suitable target for the development 
of new inotropic drugs. However, direct inhibitors of PLC 
catalytic activity are unlikely to be successful. As described 
above, the active sites of the various PLC subtypes share con-
siderable homology, and developing an inhibitor with subtype 
specificity would be challenging.42 PLCε has positive inotro-
pic actions, and therefore a general inhibitor of PLC catalytic 
activity might cause unwanted cardiac responses. In any case, 
there are currently no credible PLC inhibitors available as 
start compounds. U-73122 is often used as PLC inhibitor, but 
it has multiple actions and has never been shown to directly 
inhibit PLC.60–65

There is, however, a way in which PLCβ1b can be inhib-
ited in cardiomyocytes in a selective manner. PLCβ1b is an 
atypical splice variant of PLCβ1, and it differs from all other 
PLCβ subtypes in having a C-terminal proline-rich sequence 
instead of the usual PDZ-interacting domain (Fig. 3).42,66,67 In 
general, PLCβ subtypes target their substrate PIP2 by interact-
ing with a PDZ protein scaffold.67 The exchange of the PDZ 
ligand for a proline-rich sequence suggests that PLCβ1b is 

PLCε

PLCδ

PLCγ

PLCβ1

PH

PH

PH

PHGEF X

X

X

X Y

Y

Y

a

b

PDZ ligand

Pro-rich

HS
H

3

S
H

2

S
H

2PEF

EF

EF C2

RA1 RA2C2

C2

C2

EF

Gq

Y

Figure 3. the subtypes of plC expressed in cardiomyocytes. all plCs 
share the X and Y domains that form the active site. this is separated 
by a linker region that functions as an inhibitor. in plCγ, the X and Y 
domains, as well as a ph domain, are separated by sh2 and sh3 
domains. ph, plextrin homology domain, a domain that binds pip2; eF, 
eF hand domains that bind Ca2+; C2, C2 domain, a Ca2+ binding motif 
associated with membrane association; ra1 and ra2, ras interacting 
domains; gq, the gq interaction site involved in activation of plCβ 
subtypes. geF, CdC25 geF guanine nucleotide exchange factor domain.

http://www.la-press.com
http://www.la-press.com/clinical-medicine-insights-therapeutics-journal-j133


Novel therapeutic targets in heart failure

15CliniCal MediCine insights: therapeutiCs 2015:7

activated by a unique mechanism. We subsequently identified 
the SH3 domain and ankyrin repeat protein 3 (Shank3) as 
the protein scaffold required for the localization of PLCβ1b 
at the cardiac sarcolemma, where it is active.68 Shank3 is a 
high molecular weight multidomain protein that incorporates 
an SH3 domain in addition to a PDZ domain, a proline-
rich sequence, and ankyrin repeats.69 The SH3 domain is 
the attachment point for the proline-rich sequence at the  
C-terminal end of PLCβ1b. Like PLCβ1b, Shank3 is 
expressed in only a limited number of cell types,69,70 and so the 
PLCβ1b–Shank3 interface represents a cardiac-specific sig-
naling system. This has been verified in studies showing that 
expressing the splice-variant-specific C-terminal sequence of 
PLCβ1b (PLCβ1b-CT), as a mini-gene, disrupted the inter-
action between PLCβ1b and Shank3 and prevented down-
stream signaling.52 More recent studies have confirmed that 
delivery of PLCβ1b-CT to mouse heart in vivo protected 
it from contractile dysfunction following pressure overload, 
confirming the usefulness of this interface as a start point for 
the development of inotropic agents (Fig. 4).

Summary and Conclusions
Maintaining the phosphorylation status of PLN as a means 
to optimize SERCA2a activity and maintain SR Ca2+ content 
is a well-substantiated approach to inotropic therapy. There 
is a substantial body of work that validates inhibiting the 
inhibitory pathway mediated by PKCα as a way to achieve 
this aim. As discussed, PKCα itself is not a cardiac-specific 
target, and focusing on the upstream activator PLCβ1b may 
provide a better option. The interaction between the proline-
rich sequences in the C-terminal tail of PLCβ1b and the SH3 

domain of Shank3 provides a target that is readily amenable to 
high-throughput compound screening or to drug design based 
on structural analysis.
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